
ConcourseSuite Support

Technical Documentation

Last Modified: 2014-06-03 17:31:48.019

•
•
•
•
•

•
•
•
•

•
•
•
•
•

•
•

•
•
•
•
•
•

•

•
•
•
•
•
•
•

•
•
•
•

ConcourseSuite Support: Technical Documentation - page 2

Technical Documentation
The technical documentation is divided into the following general topics:

Server System Requirements
Application Architecture
Application Components
Modules
Implementation Guide

Roles
Business Management Role
Installation Role
Configuration and Customization Role

Phases
Analysis
Planning
Installation
Deployment

Training
Importing Data

Customization
Data Configuration
Rules Engine Customization
Customizing the Look & Feel
Writing Reports
Development

Post-Implementation
Development Process
Developer Tools
Developer References
Code Structure
Installation
Build Process from Source
Developing a ConcourseSuite Module

ConcourseSuite Framework Model
Code Action Classes
Configure cfs-config.xml
Configure cfs-modules.xml

#system requirements
#application architecture
#application components
#modules
#implementation guide
#business management role
#installation role
#configuration and customization role
#importing data
#data configuration
#rules engine customization
#customizing the look & feel
#development process
#developer tools
#developer references
#code structure
#installation
#build process
#developing a concoursesuite module
#concoursesuite framework model
#code action classes

•
•
•
•
•
•
•
•

•
•
•

•
•
•

•
•
•
•
•
•
•

•
•

•
•

ConcourseSuite Support: Technical Documentation - page 3

Setup Module Permissions and Preferences
Setup Site-Based Permissions for objects
Use Lookup Lists
Object Validator
Create Install and Upgrade Scripts
Code JSPs
Register Module Reports
Adding Portlets

Integration with Asterisk
Creating Workflows for developers
Action Plan Development

Adding Action Plan Support to Modules
Developing Action Plan Steps
Building Action Plan Reports

Using the HTTP-XML API
Handling ConcourseSuite Data
Using Web Services
Using ConcourseSuite Outlook Plugin
Database Schema
Adding support for a new database
Exercises for developers

Appendix A: Cloning a module
Appendix B: Making a module webdav accessible

Automated Configuration Without Human Intervention
Uninstalling

#setup site-based permissions for objects
#use lookup lists
#object validator
#create install and upgrade scripts
#register module reports
#adding portlets
#integration with asterisk
#creating workflows
#action plan development
#adding action plan support to modules
#using the http-xml api
#handling concoursesuite data
#using web services
#using concoursesuite outlook plugin
#adding support for a new database
#exercises
#appendix a: cloning a module
#automated configuration without human intervention
#uninstalling

ConcourseSuite Support: Technical Documentation - page 4

System Requirements
Server software and hardware requirements.

Software
Concourse Suite works on a number of platforms. This means that you can choose what works best
for your organization.

PostgreSQL is the ConcourseSuite developer's reference database. Please check the individual
release notes to ensure compatibility with your chosen database.

Operating Systems

Linux

Mac OSX

Microsoft Windows

Solaris

Database Servers

PostgreSQL 9.0+

Application Server + Java VM

Apache Tomcat 7 + Java 7

http://www.linux.org/
http://www.apple.com/macosx/
http://www.microsoft.com/windows/default.mspx
http://www.sun.com/software/solaris/?cid=276
http://www.postgresql.org
http://tomcat.apache.org
http://www.oracle.com/technetwork/java/javase/overview/index.html

ConcourseSuite Support: Technical Documentation - page 5

Apache Tomcat is the ConcourseSuite developer's reference web application server. Production uses
Apache Tomcat 7 and Oracle Java 7.

Hardware
Two cores (of any size) are recommended, as ConcourseSuite makes use of multi-threaded Java
operations.
ConcourseSuite is lightweight. Any server you can buy today is generally more than you’ll need.
However, configure it based on the needs of your organization. If you will be supporting many
simultaneous users, configure more and faster CPUs and more memory. If 100% uptime is required,
a second spare server is recommended. If your organization plans to save lots of documents,
increase the drive space. A single server can be used for the web server, database server, and mail
server.
A sensible server for real use might be:
A single dual core processor

Server Integration

SMTP Server Allows the CRM to send email

Fax Server Allows the CRM to send faxes using HylaFAX

XMPP Server Allows the CRM to send instant messages to
users, Wildfire is recommended

Asterisk Server Allows the CRM to integrate with incoming and
outgoing calls using Asterisk

LDAP Server Allows the CRM to validate user access

http://www.hylafax.org
http://www.jivesoftware.org/wildfire
http://www.asterisk.org

ConcourseSuite Support: Technical Documentation - page 6

2GB RAM
Disk to suit the purpose.
This configuration is enough for all but the most serious applications and will serve over 1000 users.

ConcourseSuite Support: Technical Documentation - page 7

Application Architecture

Client/Server Interaction
Historically, Concourse Suite chose the Theseus MVC framework back in 2000, at a time when Struts
was in early development. Theseus is lightweight, works similar to Struts, and allowed the Concourse
Suite team to add value around the basic MVC functionality. The team took into consideration
application security, performance, layouts, and reusable utilities to form the Concourse Suite
framework.
The Concourse Suite framework uses the Model-View-Controller (MVC) web design paradigm. This
methodology separates the application business logic and the presentation layer to increase
reusability and minimize development time.
Starting with CRM 6, and receiving major improvements in CRM 7, URLs can be mapped to
embedded portals to display pages with portlets. The flow is as follows:

ConcourseSuite Support: Technical Documentation - page 8

In the Concourse Suite framework implementation, a single Servlet receives every web request. This
Controller Servlet uses a customizable map to forward each request to a specific Java method, called
an Action Class. Each Action Class has a specific task, based on an action the user is trying to
complete. When the Action Class is finished, it tells the Servlet Controller and the Controller forwards
the request, as well as any data that was prepared, to a JSP. The JSP uses the JavaBeans that were
prepared and constructs an HTML page.
The servlet controller is responsible for processing HTTP requests, executing business logic, and
forwarding the result to a JSP for presentation to the client. The resulting JSP should not contain any
business logic.

ConcourseSuite Support: Technical Documentation - page 9

The controller actually maintains and executes much more than just simple requests and responses.
Review the following figure for an overview of the framework components. These components,
including page layouts, hooks, security, utilities and more are discussed later.
Understanding the basic operation of the servlet controller is important. The servlet controller
processes all HTTP requests made by a client in which the URL ends in ".do". For example, the
following URL specifies the “Login” action: "http://127.0.0.1/Login.do".
The servlet controller maps this requested action (the part before the .do) to a Java class as defined
in cfs-config.xml. So, "Login" means the controller will execute the corresponding Java class,
Login.java.

ConcourseSuite Support: Technical Documentation - page 10

If a Java Bean is specified in the web application configuration, and the HTTP request includes an
“auto-populate” parameter, then the controller instantiates the Java class and dynamically populates
the object with corresponding values in the request. The resulting object is intended to be used by the
action class or sub-classes for the remainder of the request. This is important because the developer
does not have to use the typical:

someObject.setSomeProperty(request.getParameter(“someParameter”))

ConcourseSuite Support: Technical Documentation - page 11

since auto-populate will map HTML name-value pairs to the specified JavaBean.
The action class then processes the request and returns a single status string to the controller
depending on the successful completion of the action.
The servlet controller then maps the action status string to a JSP file for dispatching to.
If a page layout or page template is specified in the mapping, then the layout and template page are
dispatched instead, which will then dispatch the final JSP. This allows for menus, static header and
static footer content to be re-used.
A developer will typically code an Action Class for each action the user is trying to perform. To reduce
duplicate code, actions can be chained and sub-actions can be re-used by more than one action.
The dispatched JSPs contain the HTML for the client. JSPs can be stand-alone files or they can be
included in other JSPs for reusability.
JSPs use the Java Beans that were instantiated during the request.
The controller implements various hooks so that the framework can be extended and customized.
Hooks add additional functionality during servlet initialization, request processing, reloading, and
shutdown. For example, an initialization hook might initialize a database connection pool and object
cache, while a request hook might implement security functionality.

Database Portability
The framework is designed to work with commercial database servers, as well as open-source
servers. To maintain compatibility and portability, Concourse Suite relies little on stored procedures
and more on database independent SQL-92 and SQL-99 syntax.
Database specific code can be used, however, to increase performance while maintaining portability
by wrapping database specific code in database-detection methods.

Servlet Container Portability

ConcourseSuite Support: Technical Documentation - page 12

The Concourse Suite application does not require any unique setup at the container level. However,
you might install an SSL certificate or make virtual host settings. The application framework is just
beginning to be integrated with containers besides Tomcat. The only modification that remains is for
the application to retrieve information from a resource, instead of at the file system level.

Java Coding Conventions by Sun/Oracle
Coding conventions allow for greater understanding of code and easier maintenance. The framework
code has been developed with Sun Coding Conventions in mind. This means that code is
documented and formatted accordingly, usually automatically by the IDE.
http://www.oracle.com/technetwork/java/javase/documentation/codeconvtoc-136057.html

Web browser compatibility
Since Concourse Suite is a web application, we've found it important to be compatible with as many
web browsers as possible.
The framework is designed to work with Internet Explorer, Mozilla Firefox, Google Chrome, and Apple
Safari to ensure compatibility with a large platform-independent user base. At the browser level,
JavaScript is used for validation and dynamic interaction with page elements. Flash and Java Applets
are not currently used.
Browser detection at the framework level can be used in both the business logic and the presentation
layer to enhance user experience.

http://www.oracle.com/technetwork/java/javase/documentation/codeconvtoc-136057.html

ConcourseSuite Support: Technical Documentation - page 13

Currently Supported Browsers

Apple Safari

Google Chrome

Internet Explorer 8+

Mozilla Firefox

1.
2.

3.
4.

5.
6.
7.

8.

9.
10.
11.

12.

13.

1.
2.
3.
4.

ConcourseSuite Support: Technical Documentation - page 14

Application Components
While most MVC implementations provide action class caches, auto-population of objects, and tag
libraries, the Concursive framework goes beyond the basics and adds real world features that are
used in web-based applications. The following list includes features that have been added to the
framework:

Security
SSL logins – providing a consistent entry-point into the application
Single session sign-on per user name – if a user is already logged in, a second login
prompts if the user should cancel the other session and continue
Client browser auto-logout when server session expires
Roles and permissions – each user can have a single role in which permissions are
granted
User hierarchy – each user can report to another user
Action level permissions – restricts module usage based on user role permissions
Record level permissions – restricts record usage based on record ownership and
user hierarchy
Protection from concurrent updates to the same record – users are notified when
another user has already updated a record in which they are trying to update
One-way encrypted passwords stored in the database
Private and public key encryption
Database gatekeeper – controls access to specific databases based on user
authentication; useful for developing against multiple databases
Protected file system on server – prevents unauthenticated access and snooping of
files
Logging

Performance
Database Connection Pool
Object Cache, for sharing system level resources between users
Image Cache, implementation for reusing images such as graphs
Indexed Data, for quicker data searches

User Interface

1.

2.

3.
4.

5.

6.

7.
•

•
•

8.

•
•
•
•
•
•

9.
10.

11.

12.

13.

1.

ConcourseSuite Support: Technical Documentation - page 15

Page layouts – templates for defining where global elements should be placed and
where the content is placed; keeping the content separate from the layout
Page skins – settings to define how page elements are displayed, typically with style
sheets; colors, borders, images, sizes, etc.
Record paging – server-side and client-side elements for navigating a result set
Calendar – server-side and client-side elements for displaying a calendar with
optional settings; small or large, with icons for holidays and custom events
File transfer – server-side and client-side elements for allowing clients to upload,
download, and stream files based on permissions and file content-type
Graphs – server-side image generation including web browser tool-tips; bar, line,
pie, plot, etc.
Menu system

Top-level menu displaying modules; graphically rich using style
sheets
Sub-menus for each module; graphically rich using style sheets
Tab-style container menus; graphically rich using style sheets

Global items – elements that traverse the whole site or a sub-section of page
layouts

My Items; a list of alerts specific to the user
Recent Items; a list of recently accessed items
Search; a text field for searching the whole site for related content
Quick Actions; a menu for popping up an action item form
Help; page-sensitive help
QA Development Tool; page-sensitive bug, feature, and help entry

Site preferences – allows for installations to easily modify the all terminology
Lookup lists – a standard way of using combo-boxes with advanced features for
displaying entries that are no longer valid in the list and for allowing items to be
modified by an administrator
Dynamic Forms – forms expressed as xml and translated by a JSP for a consistent
look
Taglibs – html tags that allow cached access to users, lookup lists, and various
custom html elements
Time Zones – every element is sensitive to the user's timezone, both when
displaying and entering dates and times

Rules Engine
Object events – action triggers a customizable workflow process when an object is
inserted, updated, deleted, or selected

2.
3.

1.
2.

1.

2.

3.

4.

5.

1.
2.

1.
2.
3.
4.
5.
6.
7.
8.
9.

ConcourseSuite Support: Technical Documentation - page 16

Scheduled events – a timer triggers a customizable workflow proces
Notification manager – responsible for sending and logging messages

System Scheduler
Can execute tasks written in Java
Can execute native executables

Data Transfer and Exchange
HTTP-based XML API – multiple clients can add, update, delete or retrieve records
on the server
Synchronization through XML API – multiple clients can synchronize tables with the
server, the server can also map legacy primary keys to server primary keys on-the-
fly
Process log through XML API – a timestamped listing of external and internal
processes
Reader/Writer – a generalized application that can read data from various inputs
and write the data to various outputs
Direct database connectivity

Document/Data Indexing and Search
Class indexers to define object metadata to be saved and indexed
Context-sensitive search results with word highlighting

Utilities
AppUtils for loading and saving persistent application settings
ContentUtils for parsing content and metadata from documents
DatabaseUtils for working with databases independent of the database type
DateUtils for common date methods
FileUtils for common file methods; copying files
HTMLUtils for working with HTML elements and data
HTTPUtils for remote HTTP and HTTPS connectivity
ImageUtils for thumbnails and image conversion
JasperReportUtils for compiling reports and generating PDFs

10.
11.
12.
13.
14.
15.
16.

ConcourseSuite Support: Technical Documentation - page 17

ObjectUtils for reflection and serialization
SearchUtils for working with result sets
SMTPMessage for text and HTML email messages, optionally with attachments
StringUtils for common string methods
SVGUtils for complex SVG methods
XMLUtils for common xml methods; parsing, searching nodes, converting to text
ZipUtils for adding files to .zip files

1.

2.
3.
4.
5.
6.
7.
8.

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

ConcourseSuite Support: Technical Documentation - page 18

Modules
ConcourseSuite comes with several modules that can be configured. From a developer's perspective,
ConcourseSuite modules make use of several framework features, including:

User session created by the Login process which defines the user's id, role, and
permissions
System configuration values that are cached in the servlet context
Database Objects that interact with the data stored in the database
Document Library framework for uploading and downloading files
Folders & Forms for custom fields
Import Manager for queueing and processing files for importing into the database
Form validation
etc.

Modules are configured by the CRM administrator using the Users and Roles web interface. The
administrator can decide which user roles have access to the modules and the modules can be
turned off completely. ConcourseSuite currently has the following modules:

My Home Page
Leads
Contacts
Pipeline
Accounts
Products
Quotes
Orders
Marketing
Revenue
Projects
Help Desk
Documents
Employees
Reports
Admin

#help desk module

•
•
•

ConcourseSuite Support: Technical Documentation - page 19

Help Desk Module
The Help Desk module is a customer support system comprising of the following tightly integrated
components:

Ticket Management
Knowledge Base Management
Defect Tracking

#ticket management
#knowledge base management
#defect tracking

ConcourseSuite Support: Technical Documentation - page 20

Ticket Management
When a ticket is entered, there are several optional relationships, which include Contacts, Service
Contracts, Assets, Labor Categories, Documents, Tasks, Action Plans, and Defects. The ticket
structure is also reused in Project Management.

Java Classes
Base objects are located at:
 org.aspcfs.modules.troubletickets.base.*;
The important base classs used in Ticket Management are Ticket and TicketList
Module actions are located at:
 org.aspcfs.modules.troubletickets.actions.*;
The important action class used in Ticket Management is TroubleTickets
Workflow engine components are located at:
 org.aspcfs.modules.troubletickets.components.*;
Supporting jasper reports code is located at:
 org.aspcfs.modules.troubletickets.jasperreports.*;

JSPs
Help Desk JSPs are located at src/web/troubletickets/* and include several reusable details and form
pages used by other modules.
Most of the jsp files related to Ticket Management start with the prefix troubletickets_'.
For example, the ticket details page has the file name troubletickets_details.jsp
Special files with the suffix _include.jsp are reused in other jsp files to improve the code maintenance
time.

1.
2.

3.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.

1.
2.
3.

ConcourseSuite Support: Technical Documentation - page 21

For example, the file troubletickets_actionplan_work_details_include.jsp is reused in the following
modules

Help Desk - troubletickets_actionplan_work_details.jsp
Accounts - accounts_action_plan_work_details.jsp and
accounts_tickets_actionplan_work_details.jsp
My Homepage - action_plan_work_details.jsp

Database Tables
ticket

org_id – the organization that requested this ticket
contact_id – the contact that requested this ticket
problem – the issue that was raised in response to creating this ticket
closed – the date/time when this ticket was closed, whether solved or not
pri_code – the assigned priority
level_code (unused)
department_code – the department to which this ticket is assigned
source_code – the method in which this ticket was submitted: email, phone call, etc.
cat_code – the top level category that this ticket maps to
subcat_code1 – the category narrowed another level
subcat_code2 – the category narrowed another level
subcat_code3 – the category narrowed another level
assigned_to – the user that is assigned this ticket
comment (unused)
solution – the solution that was used to solve the issue
scode – The severity in which the issue is disruptive of service
critical (unused)

ticketlog
When a ticket is updated, the data is analyzed and all changes are appended to a log, including
comments.
For example, the ticket workflow might include the following steps, at each step a log record is
created:

The ticket issue is entered into the database
The ticket is assigned to a user
The user reviews the ticket and adds a comment

4.

1.
2.
3.

ConcourseSuite Support: Technical Documentation - page 22

The user closes the ticket
These fields resemble a ticket and map back to the user that made the changes.

Workflow Events
Ticket insertion and updation is linked to a specific set of background processes or workflow. The
application workflow handles insertion and updation of the contact and account history. The user
workflow handles custom user notifications. The currrent workflow also includes a scheduled
workflow for Ticket Management to notify users of the presence of unassigned tickets in the Help
Desk module.

Object Validation
The object validator for Tickets checks for the presence of the following fields.

orgId
contactId
problem

It also checks for valid input in the case of related objects.
Object validation is performed by the following lines of code in the action class TroubleTickets.java.
 // set the valid flag to false.
 boolean isValid = false;
 // validate the ticket object and return "false" to indicate the presence of validation errors.
 isValid = this.validateObject(context, db, thisTicket);
If the value of isValid is false, the ObjectValidator has added the errors to the ActionContext and the
ticket should not be inserted or updated.
The control needs to be returned back to the Add/Modify page for displaying the errors or warnings.
The Add/Modify JSP pages contain the following additional code at the begining of the file to display
the generic warning in case of an error in the input fields.

ConcourseSuite Support: Technical Documentation - page 23

 <dhv:formMessage />
 or
 <dhv:formMessage showSpace="true"/>
 or
 <%= showError(request, "actionError") %>
The specific error in the field is displayed by adding the following line of code after the specific field.
 <%= showAttribute(request,"orgIdError") %>
Mandatory items have the following html code at the end of the input field in the jsp.
 *

Recent Items
On inserting, modifying or deleting tickets, the recent items have to be updated in the action class as
follows:
 addRecentItem(context, thisTicket); // on viewing or modifying the ticket.
 deleteRecentItem(context, thisTicket); // on deleting the ticket.

1.
2.
3.
4.
5.

ConcourseSuite Support: Technical Documentation - page 24

Knowledge Base Management
Knowledge Base Management involves the assimilation of data related to Tickets based on the
categorization of tickets.
A link is provided in the ticket details page to display the relevant knowledge base entries for the
selected ticket categories.

Java Classes
Base objects are:
 org.aspcfs.modules.troubletickets.base.KnowledgeBase;
 org.aspcfs.modules.troubletickets.base.KnowledgeBaseList;
Module action is:
 org.aspcfs.modules.troubletickets.actions.KnowledgeBaseManager;

JSPs
Knowledge Base Management JSPs are located at src/web/troubletickets/*.
All the JSP files related to the Knowledge Base Management have a prefix
"troubletickets_knowledge_base_".

Database Tables
table knowledge_base

kb_id - primary key.
category_id - used to store the ticket category related to the knowledge base entry.
title - the title of the entry.
description - text description of the entry.
item_id - related file is stored in the file library and its entry in the table project_files.

ConcourseSuite Support: Technical Documentation - page 25

Object Validation
Knowledge Base items can not exist without the relevant ticket categorization. Hence the object
validator checks for the presence of the related categoryId and the title fields. Though the file
attachment is optional for entering a knowledge base entry, an invalid file name will cause the object
validation errors.

1.
2.
3.
4.
5.
6.
7.

8.

ConcourseSuite Support: Technical Documentation - page 26

Defect Tracking
Defect Tracking helps users to track tickets related to a common defect.

Java Classes
Base objects are:
 org.aspcfs.modules.troubletickets.base.TicketDefect;
 org.aspcfs.modules.troubletickets.base.TicketDefectList;
Module action is:
 org.aspcfs.modules.troubletickets.actions.TroubleTicketDefects;

JSPs
Defect Tracking JSPs are located at src/web/troubletickets/*.
All the JSP files related to the Defect Tracking have the prefix "troubletickets_defect_".
The troubletickets_details.jsp is reused to display the ticket details from the defect details page. The
attribute defectCheck is used to determine the correct trails in the ticket details page.

Database Tables
table ticket_defect

defect_id - primary key
title - a concise title of the defect
description - text describing the defect in detail
start_date - estimated start date of the defect.
end_date - estimated date then the defect expires.
enabled - used to disable the defect without effecting the start and expiration dates.
trashed_date - this date/time field is set to let the application's background trashing
process delete the defect and related ticket mapping.
site_id - the site selection of the defect.

ConcourseSuite Support: Technical Documentation - page 27

Object Validation
ObjectValidator checks for the presence of the fields title and startDate on Adding/Modifying
TicketDefects.

ConcourseSuite Support: Technical Documentation - page 28

Implementation Guide

Welcome to ConcourseSuite!
The installation, configuration, maintenance and upgrade of ConcourseSuite is intended to be as
simple as possible. However, implementing ConcourseSuite, like any enterprise-class software, is
often a significant task for an organization. Implementation requires management participation,
technical staff, and often the help of experienced ConcourseSuite consultants.
This document is written for the team of people responsible for implementing ConcourseSuite. The
document is broken into roles and phases. In smaller organizations, several roles may be filled by a
single individual, while in larger organizations each role may be divided among several people.
This document assumes that organizations implementing ConcourseSuite may use the services of a

ConcourseSuite Solution Provider.

Features
The Enterprise and Open-Source editions have the exact same feature-set. The Enterprise edition is
pre-compiled, includes easy upgrade scripts, and requires a maintenance contract to foster
innovation. The Open-Source edition must be compiled and aggressively maintained.

Implementation Roles

http://www.centriccrm.com/Portal.do?key=partners&nid=321

ConcourseSuite Support: Technical Documentation - page 29

Role Description

Business Management Role Responsible for mapping business processes
and terminology to ConcourseSuite. The
business manager analyzes the organization,
constructs flow-charts, determines default
ConcourseSuite values and outlines
customizations needed by the organization.

Installation Role Responsible for installing and configuring
operating systems, servers, hardware and
related CRM software. Additionally
responsible for maintenance and disaster
recovery plans.

Configuration and Customization Role Responsible for configuring and setting up
ConcourseSuite based on the needs of
management. The customizer is also
responsible for implementing customizations.

1.
2.
3.
4.

ConcourseSuite Support: Technical Documentation - page 30

Business Management Role
The business management role oversees the CRM implementation. This role conveys CRM
requirements to the other roles.
This role should:

Become familiar with the data configuration of CRM
Map your organization's business processes and terminology to CRM
Define roles in CRM that clearly represent roles in your organization
Determine the users of the system

#data configuration
#workflow planning

ConcourseSuite Support: Technical Documentation - page 31

Data Configuration

Roles
Roles allow the administrator to manage groups of permissions granted to users. Changing
permissions occurs in real-time, such that adjustments are immediate upon saving the role
permissions, even if the user is already logged in. Permissions include having access to modules,
and having VIEW/ADD/EDIT/DELETE permissions on module data.

Lookup Lists
All of the drop-down menus are customizable. When lists are modified over time, the values are
never permanently deleted. So if there are records using a value, and that value is deleted from the
drop-down, existing records will continue to show that value, but with an "*" to indicate the value is no
longer current. New records will stop displaying deleted values.

Custom Folders and Fields
This capability allows for custom data to be recorded against records. Not only can you add
additional fields to records, but you can add an unlimited set of custom fields to a record.
For example, in the Accounts module you might want to log the organization's Affiliate Id (a custom
field), or you might want to record monthly invoices imported from another system (multiple input of
custom fields).

Categories
Some capabilities in the CRM allow for hierarchical related data. In the Tickets module, for example,
tickets can be categorized up to four (4) levels -- based on the selection in the first category, the
second category dynamically adjusts.

Territories

ConcourseSuite Support: Technical Documentation - page 32

Choose whether or not the "Territories" capability is right for your organization.
The introduction of territories (formerly called Sites) arose out of the corporate need to isolate groups
of users and their data. The purpose of territories is to create "silos" of information among users.
Users with a territory can only see data within that territory. Top-level users (those without a territory)
can see data among all of the territories. These top-level users can participate within each territory
and can make assignments to other territory-specific users and non-territory users. As users work
within a territory, they are creating referential data which creates dependencies to the territory. Keep
in mind that moving data from one territory to another is currently not possible.

ConcourseSuite Support: Technical Documentation - page 33

Workflow Planning

Action Plans & Workflow

Rules Engine & Events

ConcourseSuite Support: Technical Documentation - page 34

Installation Role
This role reviews the installation requirements, configures the hardware and software, and performs
post-installation tasks.

•
•
•
•
•
•

•
•

•
•

•
•

ConcourseSuite Support: Technical Documentation - page 35

Configuration and Customization Role
This role is responsible for configuring and setting up the CRM based on the needs of management.
The customizer is also responsible for implementing customizations requested by the business
management role.

Configuration
Users
Roles
Permissions
Lookup Lists
Action Plans
Fields and Folders

Customization
Customizing the Look & Feel
Rules Engine Customization

Processes Library
Components Library

Writing CRM Reports
Portlets

#customizing the look & feel
#rules engine customization

ConcourseSuite Support: Technical Documentation - page 36

Customizing the Look & Feel
The Centric CRM framework UI is displayed by pulling together a Layout and a Style Sheet, along
with some application preferences.
The default look and feel includes the Centric CRM logo, the modules listed across the top, the global
items displayed on the right, and the body of the selected page included in the middle. The default
also includes a professional color scheme and the "Centric CRM" application title. These elements
can easily be modified.

Layout

Style Sheet

Dictionary

1.
2.

3.

4.

ConcourseSuite Support: Technical Documentation - page 37

Rules Engine Customization
Collaboration in Centric CRM is typically achieved through Action Plans, Assignments, Ownership
and Workflows.
Every time a user inserts, updates, or deletes data in Centric CRM, a component-based multi-
threaded rules engine is triggered. Events are handled in the background exposing the object before
and after it was modified. This can be used for creating an account history item for the selected
object, executing a workflow, indexing data, and more, allowing complete customization of an
Organization's business processes.

Example Workflow
The following default process occurs every time a ticket is inserted or updated in Centric CRM. The
workflow is designed using Centric CRM Action Components and Condition Components. These
components are included with Centric CRM. Developers can completely modify this workflow, and
others, by changing rules, properties and adding custom components to do just about anything.
See Creating Workflows to understand the terminology and construction of a workflow and its

components. When designing a workflow, it's often best to start with a diagramming tool and create

visual flowcharts of the Organization's processes.

Deploying a workflow
Deploying a Workflow using existing Workflow Components:

Provide the workflow.xml file to a Centric CRM administrator
The administrator navigates to the Admin module, then chooses Configure System,
then chooses Business Process Management
The administration then uploads the new workflow, optionally replacing any existing
workflows -- the default will append the workflows
A success message indicates the processes were added

Deploying a Workflow using new components:

#creating workflows

1.
2.

3.
4.
5.

6.
7.

8.

9.

ConcourseSuite Support: Technical Documentation - page 38

Package up the custom workflow components into a .jar
Copy the .jar into Centric CRM's fileLibrary for backup (a future update will automate
deploying these)
Copy the .jar into Centric CRM's webapp/WEB-INF/lib directory
Restart the Web Application Server
Register the custom components with the Centric CRM database (to be
documented)
Provide the workflow.xml file to a Centric CRM administrator
The administrator navigates to the Admin module, then chooses Configure System,
then chooses Business Process Management
The administration then uploads the new workflow, optionally replacing any existing
workflows -- the default will append the workflows
A success message indicates the processes were added

•
•
•

ConcourseSuite Support: Technical Documentation - page 39

Creating Workflows
The ConcourseSuite CRM framework includes a simple, component-based rules engine that can be
used asynchronously for object events (events triggered by inserting, updating, or deleting objects) or
for events that occur at a scheduled point in time.
A workflow process is comprised of Java components that act as Conditions or Actions. Conditional
components usually inspect an object, then decide if the result is true or false. Action components
perform an action based on the object, like sending an email.
The business process workflow is defined using XML, which can be imported into a system using the
ConcourseSuite CRM Admin Module. The processes get cached when the application starts up and
wait until triggered.

Example Workflow
The following process occurs every time a ticket is inserted or updated in ConcourseSuite CRM. The
workflow is designed using Action Components and Condition Components. These components are
included with ConcourseSuite CRM. Developers can completely modify this workflow, and others, by
changing rules, properties and adding custom components to do just about anything.

Workflow XML
Each process is defined using XML. In the base CRM installation, a workflow_en_US.xml is
provided, along with additional translated versions.
The workflow.xml file contains the following information:

Workflow Processes
The Objects and Actions which trigger a process
The Schedules which trigger a process

Defining a Workflow Process
A process has a unique name, a description, a startId which determines the first component in the
process, a process type, and a module id which relates the process to a ConcourseSuite CRM
module for viewing online.

ConcourseSuite Support: Technical Documentation - page 40

The following process starts with component "2" which uses the QueryTicketJustClosed component
to determine if the Ticket being inserted or updated has just been closed. This component will return
a "true" or "false" and any components that respond to the condition will be triggered accordingly.

ConcourseSuite Support: Technical Documentation - page 41

<processes>
 <process name="dhv.ticket.insert" description="Ticket change notification"
startId="2"
 type="OBJECT_EVENT" module="8">
 <components>
 <component id="2"
class="org.aspcfs.modules.troubletickets.components.QueryTicketJustClosed"/>
 <component id="3" parent="2" if="false"

class="org.aspcfs.modules.troubletickets.components.QueryTicketJustAssigned"/>
 <component id="4" parent="2" if="true"
 class="org.aspcfs.modules.components.SendEmailNotification">
 <parameters>
 <parameter name="notification.module" value="Tickets"/>
 <parameter name="notification.itemId" value="${this.id}"/>
 <parameter name="notification.itemModified" value="${this.modified}"/>
 <parameter name="notification.userToNotify"
value="${previous.enteredBy}"/>
 <parameter name="notification.userGroupToNotify"
value="${previous.userGroupId}"/>
 <parameter name="notification.subject">Ticket Closed:
${this.paddedTicketId}</parameter>
 <parameter name="notification.body"><![CDATA[The following ticket
in ConcourseSuite CRM
has been closed:

--- Ticket Details ---

Ticket # ${this.paddedTicketId}

Priority: ${ticketPriorityLookup.description}

Severity: ${ticketSeverityLookup.description}

Issue: ${this.problem}

Comment: ${this.comment}

Closed by: ${ticketModifiedByContact.nameFirstLast}

Solution: ${this.solution}

]]></parameter>
 </parameters>
 </component>
 <component id="5" parent="3" if="true"
 class="org.aspcfs.modules.components.SendEmailNotification">
 <parameters>
 <parameter name="notification.module" value="Tickets"/>
 <parameter name="notification.itemId" value="${this.id}"/>
 <parameter name="notification.itemModified" value="${this.modified}"/>
 <parameter name="notification.userToNotify" value="${this.assignedTo}"/>
 <parameter name="notification.subject">Ticket Assigned:
${this.paddedTicketId}</parameter>
 <parameter name="notification.body"><![CDATA[The following ticket
in ConcourseSuite CRM
has been assigned to you:

--- Ticket Details ---

Ticket # ${this.paddedTicketId}

Priority: ${ticketPriorityLookup.description}

Severity: ${ticketSeverityLookup.description}

Issue: ${this.problem}

Assigned By: ${ticketModifiedByContact.nameFirstLast}

Comment: ${this.comment}

]]></parameter>
 </parameters>

ConcourseSuite Support: Technical Documentation - page 42

Triggering an Object Based Process
Most ConcourseSuite CRM Module Action Classes call processInsertHook(), processUpdateHook(),

and processDeleteHook() when their objects are modified.
The following XML will enable ticket record triggers, when a ticket is inserted or updated in any
module, including the HTTP-XML API... the same process is used for insert and update in this

example.

]]></parameter>
 </parameters>
 </component>
 <component id="7" parent="5" if="true"
 class="org.aspcfs.modules.components.SendEmailNotification">
 <parameters>
 <parameter name="notification.module" value="Tickets"/>
 <parameter name="notification.itemId" value="${this.id}"/>
 <parameter name="notification.itemModified" value="${this.modified}"/>
 <parameter name="notification.userGroupToNotify"
value="${this.userGroupId}"/>
 <parameter name="notification.skipUsers" value="${this.assignedTo}"/>
 <parameter name="notification.subject">Ticket Assigned:
${this.paddedTicketId}</parameter>
 <parameter name="notification.body"><![CDATA[The following ticket
in ConcourseSuite CRM
has been assigned to: ${ticketAssignedToContact.nameFirstLast}

--- Ticket Details ---

Ticket # ${this.paddedTicketId}

Priority: ${ticketPriorityLookup.description}

Severity: ${ticketSeverityLookup.description}

Issue: ${this.problem}

Assigned By: ${ticketModifiedByContact.nameFirstLast}

Comment: ${this.comment}

]]></parameter>
 </parameters>
 </component>
 <component id="6" parent="2" if="true"
 class="org.aspcfs.modules.troubletickets.components.SendTicketSurvey"
enabled="false"/>
 </components>
 </process>
</processes>

#code action classes
#processinserthook()
#processinserthook()
#processinserthook()
#using the http-xml api

ConcourseSuite Support: Technical Documentation - page 43

Triggering a Schedule Based Process
Scheduled processes are great when integrating with other systems or for batch notification.
To schedule a process using standard CRON terminology, the following XML will trigger a process
that emails a manager when tickets have not been assigned within 10 minutes.

Workflow Components
ConcourseSuite CRM workflow components are Java objects intended to inspect data or act on data.
As of Version 4.0, ConcourseSuite CRM ships with 42 "Query" workflow components and 5 "Action"
components.
Most components extend the com.concursive.crm.workflow.ObjectHookComponent Class which
provides easy access to database connections within a component, plus other useful methods.
Components also implement the com.concursive.crm.workflow.ComponentInterface.

<hooks>
 <hook class="org.aspcfs.modules.troubletickets.base.Ticket" module="8">
 <actions>
 <action type="update" process="dhv.ticket.insert" enabled="true"/>
 <action type="insert" process="dhv.ticket.insert" enabled="true"/>
 </actions>
 </hook>
</hooks>

<schedules>
 <schedule>
 <events>
 <event process="dhv.report.ticketList.overdue"
 second="0" minute="*/10" hour="8-18" dayOfMonth="*" month="*" dayOfWeek="*"
year="*"
 extraInfo="" businessDays="true" enabled="true"/>
 </events>
 </schedule>
</schedules>

ConcourseSuite Support: Technical Documentation - page 44

A Simple Component
The following component checks to see if a ticket was reassigned by the user... the result for
components is always boolean.

Registering a Component
ConcourseSuite CRM maintains a list of components in a library, which is read into memory when the
web application starts.

public class QueryTicketJustAssigned extends ObjectHookComponent implements
ComponentInterface {

 public String getDescription() {
 return "Was the ticket just assigned or reassigned?";
 }

 public boolean execute(ComponentContext context) {
 Ticket thisTicket = (Ticket) context.getThisObject();
 Ticket previousTicket = (Ticket) context.getPreviousObject();
 if (thisTicket != null) {
 if (previousTicket != null) {
 //Ticket was updated
 return ((thisTicket.getAssignedTo() != previousTicket.getAssignedTo())
 && thisTicket.getAssignedTo() > 0);
 } else {
 //Ticket was inserted
 return (thisTicket.getAssignedTo() > 0);
 }
 }
 return false;
 }

}

ConcourseSuite Support: Technical Documentation - page 45

Code Action Classes
A module Action Class contains the server-side code that gets executed when the user selects a URL
in their browser.
For example, when the user clicks “Generate a Report” the server maps the user request to Java
code that prepares the data for displaying back to the user. So, the action might perform database
queries, retrieve information from a cache, create Java Beans, etc. When the action is done, all of
the data is forwarded to a JSP for returning HTML back to the user's browser.

The Simplest Action Class
The following code is actually quite powerful, although no work is actually being done here. Based on
additional ConcourseSuite CRM configuration parameters, the following URL might be enabled...

This causes the following code to be executed by the server...

Before any code is executed, the Controller will ensure that the browser has already logged into
ConcourseSuite CRM before continuing.
Next, if the CRM configuration has a mapping between Prototype and DefaultOK then the Controller
will execute the Default Action of the Prototype Action Class, then based on the return string, forward
the response to the mapped action, which might be defined as a JSP or a chained Action.

http://127.0.0.1/crm/Prototype.do?command=Default

package com.concursive.crm.web.modules.prototype.actions;

import com.concursive.commons.web.mvc.actions.ActionContext;
import com.concursive.crm.web.controller.actions.CRMModule;

public final class Prototype extends CRMModule {
public String executeCommandDefault(ActionContext context) {
 return ("DefaultOK");
 }
}

1.

2.

3.

4.

5.

6.

•
•

•
•

•
•
•

ConcourseSuite Support: Technical Documentation - page 46

Important Notes About Action Classes
Action Class methods must be in the form
executeCommandName(ActionContext context) where [name] is the name of an
action, like Add; when a request is made that does not specify a command, then
executeCommandDefault(ActionContext context) is used
Trap all errors, with catch (Exception) in the action's method and return an OK or
Error result to the Controller
Always use finally to release any resources used by the action, like a database
connection, whether the method was successful or not
Use a single database connection sparingly and quickly, be sure to free the
connection when finished; getConnection(context) retrieves a connection for the
current user from the pool, and freeConnection(context, db) returns it back to the
pool; Do not use connection.close() or it will really be closed
Store objects in the request to be used by JSPs; use session objects sparingly
as they require additional memory storage
When a POST is finished, use a redirect 302 instead of displaying the page within
the POST request.

Extending

com.concursive.crm.web.controller.actions.CRMModule
Extending the CRMModule class provides many useful methods that can be used during the action
code execution.

Important Methods
hasPermission() -- to verify user permissions
getConnection(), freeConnection(), renewConnection() -- to retrieve and reuse

database connections
getUserId() -- to get the logged in user's id
getUserRange() -- to get the user ids of the logged in user and the ids of those in that
user's hierarchy as CSV
getUserSiteId() -- to get the logged in user's site id, or -1 if none
getUser() -- to get the logged in user's User session
getPagedListInfo() -- to get the specified pagedListInfo object for a specific record list
view

#haspermission()
#getconnection()
#getconnection()
#getconnection()

•
•
•
•

•

•
•

•

•
•
•
•

ConcourseSuite Support: Technical Documentation - page 47

getUserTimeZone() -- to get the logged in user's time zone
hasAuthority() -- to verify access to a record
validateObject() -- to validate a CRM object
processInsertHook(), processUpdateHook(), and processDeleteHook() -- to activate

the workflow engine
addRecentItem(), deleteRecentItem(), getRecentItem() -- to work with the "recent
items" list
getSystemStatus() -- to retrieve the system preferences that this user belongs to
getPath(), getDbNamePath(), getDatePath(), getWebInfPath -- returns a path to the
file library
isRecordAccessPermitted(context, db, int) , isRecordAccessPermitted(ActionContext,

Object) -- Check record permissions for the user on an object
isPortalUser() -- returns whether the current user is using the portal interface or not
indexAddItem(), indexDeleteItem() -- to add or remove objects from the search index
executeJob() -- to force execution of scheduled or unscheduled jobs
getViewpointInfo() -- to get details about the user's current viewpoint

Debugging
ConcourseSuite CRM has been configured to use Apache Commons Logging.
If the web application was installed with debugging turned on, then debug output will be sent to a log

file in ${TOMCAT_HOME}/logs/; on Linux, Mac, and Sun the file is catalina.out and on Windows the

files are stdout.txt and stderror.txt.
In any class the following code convention is used to output debug info:

Code with System.out messages will not be accepted. System.out messages can slow down a
production web server when enabled and use a lot of disk space.

LOG.debug("Some text");

#processinserthook()
#processinserthook()
#processinserthook()
#isrecordaccesspermitted(context, db, int)
#isrecordaccesspermitted(actioncontext, object)
#isrecordaccesspermitted(actioncontext, object)
#build process

•

•

•

ConcourseSuite Support: Technical Documentation - page 48

hasPermission()
Every action in ConcourseSuite CRM requires a user permission check. Based on the user's role,
various permissions are enabled and disabled.
Use hasPermission(context, "permission name-attribute") to verify that the user has the specified
permission before continuing execution of the current action.

Permissions are generally in the form of "module-feature-action" and are defined in
the permissions.xml file.
The permission check is usually performed first in an Action Class, however multiple
checks can be made
Users should never see an error message that they do not have access to perform the
function; the HTML view should hide those things that the user does not have access
to

The following Action Class checks to see if the user has access to perform this action...

The permission is named "sales" and the attribute is "view" -- as described in Create Install and

Upgrade Scripts under the Permission Entry section.

public String executeCommandSearchForm(ActionContext context) {
 if (!hasPermission(context, "sales-view")) {
 return ("PermissionError");
 }
 SystemStatus systemStatus = this.getSystemStatus(context);
 Connection db = null;
 try {
 ...
 }
}

#create install and upgrade scripts
#create install and upgrade scripts
#create install and upgrade scripts

•
•

•

•

•
•
•
•
•

ConcourseSuite Support: Technical Documentation - page 49

Create Install and Upgrade Scripts
When installing ConcourseSuite CRM for the first time, a series of SQL statements, Java
Applications, and BeanShell Scripts are executed.

The SQL statements create database tables and referential integrity
A Java application installs default data into the tables, based on Locale, from
permissions_en_US.xml
A Java application installs default lookup data into the tables, based on Locale, from
lookuplists_en_US.xml
A Java application installs default help data into the tables, based on Locale, from
help.xml

Updating the Install Scripts
SQL Statements
In the ConcourseSuite CRM code structure, there are installation directories for each database type.

In each database specific subdirectory, there are files in the form of "new_*.sql" -- these files are read

in a specific order by build.xml during database installation.
If possible, edit the existing new_*.sql file with your changes or additions if applicable. If your
additions are unrelated to the existing files, then create a new_*.sql file and register it in build.xml.
For your additions and changes to work under different database platforms, database specific files
are provided and should also be updated. At some point these are synchronized by the core team.

Permissions XML
The permissions.xml file is read in during database installation and includes:

Module Names
Module Permissions
Module Editors
Module Reports
User Roles and default permissions

#code structure

1.
2.

3.
4.

ConcourseSuite Support: Technical Documentation - page 50

If making a change to an existing module, be sure to update the capabilities, permissions, and related
capability details for that module. If adding a new module, model the new module after an existing
module.
A snippet from the Help Desk module appears as:

The Help Desk module is declared with a unique constant id, a name, and the following editor
capabilities:

Folders -- enables the Administrator module editor for modifying Help Desk folders
Lookups -- enables the Administrator module editor for modifying Help Desk lookup
lists
Reports -- enables Help Desk reports in the Reports module
ScheduledEvents -- enables displaying Help Desk scheduled events in the
Administrator module

<category id="8" name="Help Desk" folders="true" lookups="true" reports="true"
 scheduledEvents="true" objectEvents="true"
 categories="true" actionPlans="true" customListViews="true">
 <folder constantId="11072003" description="Tickets"/>
 <lookup constantId="922051718" class="lookupList" table="lookup_ticket_cause"
 description="Ticket Cause"/>
 <lookup constantId="922051719" class="lookupList"
table="lookup_ticket_resolution"
 description="Ticket Resolution"/>
 <permission name="tickets" attributes="v---" description="Access to Help Desk
module"/>
 <permission name="tickets-tickets" attributes="vaed" description="Ticket
Records"/>
 <permission name="tickets-tickets-tasks" attributes="vaed" description="Tasks"/>
 <permission name="tickets-knowledge-base" attributes="vaed"
description="Knowledge Base"/>
 <permission name="tickets-defects" attributes="vaed" description="Ticket
Defects"/>
 <report file="tickets_department.xml" type="user" permission="tickets-tickets"
 title="Tickets by Department"
 description="What tickets are there in each department?"/>
 <report file="ticket_summary_date.xml" type="user" permission="tickets-tickets"
 title="Ticket counts by Department"
 description="How many tickets are there in the system on a particular date?"/>
 <report file="assets_under_contract_report.xml" type="user" permission="tickets-
tickets"
 title="Assets Under Contract"
 description="Which assets are covered by contracts?"/>
 <multipleCategory constantId="202041401" table="ticket_category" maxLevels="4"
 description="Ticket Categories"/>
 <actionPlanEditor constantId="912051329" description="Action Plans related to
Tickets"/>
 <customListViewCategory constantId="113051436" description="Ticket Custom List
Views"/>
</category>

5.

6.
7.

8.

ConcourseSuite Support: Technical Documentation - page 51

ObjectEvents -- enables displaying Help Desk object events in the Administrator
module
Categories -- enables the Administrator module for modifying Help Desk categories
ActionPlans -- enables the Administrator module for configuring Help Desk action
plans
CustomListViews -- enables the Administrator module for configuring Help Desk list
views

For each capability, a corresponding entry must be created.

Folder Entry

Folders have a unique constantId and a description.

Lookup List Entry

Lookup lists have a unique constantId, specify a class which defines how the lookup list is edited,
the table to be modified, and a description. The following entry will register a lookup list against a
specific module. The default data for a lookup list is stored in the Lookup List XML.

Permission Entry

Permissions have a unique name, description, and all of the attributes that have been implemented
by the developer
Attributes map to the web-based role editor as:

<folder constantId="11072003" description="Tickets"/>

<lookup constantId="922051719" class="lookupList" table="lookup_ticket_resolution"
 description="Ticket Resolution"/>

•

•
•
•

ConcourseSuite Support: Technical Documentation - page 52

v Access to the specified module or module area; or Access to view records of the
specified type
a Access to add records of the specified type
e Access to edit records of the specified type
d Access to delete records of the specified type

Report Entry

Reports are associated with a file, have an access type, can be mapped to a user permission, have
a short title, and have a lengthier description.

Multiple Category Entry

Action Plan Editor Entry

<permission name="tickets" attributes="v---" description="Access to Help Desk
module"/>
<permission name="tickets-tickets" attributes="vaed" description="Ticket Records"/>

<report file="assets_under_contract_report.xml" type="user" permission="tickets-
tickets"
 title="Assets Under Contract" description="Which assets are covered by
contracts?"/>

<multipleCategory constantId="202041401" table="ticket_category" maxLevels="4"
 description="Ticket Categories"/>

<actionPlanEditor constantId="912051329" description="Action Plans related to
Tickets"/>

ConcourseSuite Support: Technical Documentation - page 53

Custom List View Category Entry

Role Entry

Further down in the file there are default User Roles that also get installed. For each role, a name is
identified, a lengthier description, and the permissions and access attributes that this role has.

Lookup Lists XML

Updating the Upgrade Scripts
Upgrade scripts are also stored in the src/sql directory structure and can be either database specific
.sql files, or database and language independent .bsh files.

<customListViewCategory constantId="113051436" description="Ticket Custom List
Views"/>

<role name="Sales Manager" description="Manages all accounts and opportunities">
 <permission name="myhomepage" attributes="v---"/>
 <permission name="myhomepage-dashboard" attributes="v---"/>
 <permission name="myhomepage-inbox" attributes="v---"/>
 <permission name="myhomepage-tasks" attributes="vaed"/>
 <permission name="myhomepage-reassign" attributes="v-e-"/>
 <permission name="myhomepage-profile" attributes="v---"/>
 <permission name="myhomepage-profile-personal" attributes="v-e-"/>
 <permission name="myhomepage-profile-settings" attributes="v-e-"/>
 <permission name="myhomepage-profile-password" attributes="--e-"/>
 <permission name="myhomepage-action-lists" attributes="vaed"/>
 <permission name="myhomepage-action-plans" attributes="vaed"/>
 <permission name="sales" attributes="v---"/>
 <permission name="sales-leads" attributes="vaed"/>
 <permission name="sales-import" attributes="v---"/>
</role>

ConcourseSuite Support: Technical Documentation - page 54

SQL scripts are used for making changes to the schema, BeanShell scripts are used for data related
additions and changes.
Since ConcourseSuite CRM is localized and supports multiple database servers, using a .sql script is
usually not acceptable for inserting String values into the database. In these cases, a BeanShell
script must be created to insert the values.

SQL Upgrade Scripts

BeanShell Upgrade Scripts

ConcourseSuite Support: Technical Documentation - page 55

Code Structure
The Centric CRM source code is available from the Centric CRM Community web site. Starting with

Centric CRM Version 4.0, the source code can be accessed from the Centric CRM Subversion

server.
Register with the Centric CRM site, then use your username and password, and a subversion client,

to checkout the latest working code.

Going forward, all releases will be tagged, branched, and merged back into the TRUNK so that they
can be accessed and have fixes applied.

Key Directories and Files

Subversion Branches Available

Centric CRM v4.0 Release Branch https://svn.centricsuite.com/webapp/branches/
branch-40

Centric CRM v4.1 Release Branch https://svn.centricsuite.com/webapp/branches/
branch-41

Centric CRM v5.0 Release Branch https://svn.centricsuite.com/webapp/branches/
branch-42

http://www.centriccrm.com
#developer tools

ConcourseSuite Support: Technical Documentation - page 56

 Path Description

 build.xml Apache Ant build script

 master.properties List of configurable Centric CRM properties --
edit a copy only

 build.cleanup Outdated files that will be deleted from the
web server during the build process

 src/ All of the application source code is split into
subdirectories here

 src/java/ Java source code

 src/languages/ The language translation files that are
exported from the Centric CRM web site

 src/sql/ SQL and BeanShell scripts used for installing
and upgrading databases

 src/web/jsp/ JSP files

 src/web/css/ CSS files

 src/web/images/ Web optimized images

 src/web/WEB-INF/ Web application configuration files

 lib/ 3rd party libraries

 pref/ Configuration and language translation files

http://ant.apache.org
http://www.beanshell.org

ConcourseSuite Support: Technical Documentation - page 57

 build/ Temporary files generated during the build
process

ConcourseSuite Support: Technical Documentation - page 58

Developer Tools
The following are platform-independent tools recommended for working on Centric CRM and
framework code and documentation. Developers should use an IDE that they and/or their
organization are comfortable in using.

Build Tool
Centric CRM uses Apache Ant for compiling and deployment. Version 1.6.2 or higher is required.

IDE/Editor
Recommended editors include JEdit, Eclipse, JetBrains IntelliJ and NetBeans. These editors work

well with web applications and each of the file types you will be working with.

Source Control
If your IDE doesn't have Subversion support, then we recommend using SmartSVN or the command-

line tools for Subversion.
For more information, the SVN book is available online.

Reporting Tools
The JasperReports library is included with the Centric CRM source code, but check the

JasperReports website for documentation and license information.
iReport is a GUI front-end for JasperReports. The download includes everything needed to design

and work with JasperReports documents visually. When using iReport, it is necessary to use a

version compatible with the version of JasperReports used in Centric CRM.

http://ant.apache.org
http://www.jedit.org
http://www.eclipse.org
http://www.jetbrains.com
http://www.netbeans.org
http://www.smartsvn.com
http://subversion.tigris.org
http://svnbook.red-bean.com/
http://jasperreports.sourceforge.net
http://jasperforge.org/sf/projects/ireport

ConcourseSuite Support: Technical Documentation - page 59

getConnection()
The methods getConnection(), freeConnection(), and renewConnection() all work together to
provide the Action Class with interaction with the database connection pool.
The following code shows example usage of getConnection() and freeConnection() from an Action

Class:

ConcourseSuite CRM has default properties in "build.properties" that specifies the maximum amount
of time that a connection can be retained.

If the connection is not renewed with renewConnection(db) then the connection will be assumed to
be misused and destroyed after the time limit has expired.
Since some operations in ConcourseSuite CRM may require a lengthy database connection, the
connection can be renewed often to prevent recycling.

Connection db = null;
try {
 // Get a database connection from the pool
 db = getConnection(context);
 // Perform lots of work with the connection
} catch (Exception e) {
 context.getRequest().setAttribute("Error", e);
 return ("SystemError");
} finally {
 // Return the database connection to the pool
 this.freeConnection(context, db);
}

CONNECTION_POOL.MAX_DEAD_TIME.SECONDS=300

#code action classes
#code action classes

ConcourseSuite Support: Technical Documentation - page 60

processInsertHook()
The methods processInsertHook(), processUpdateHook(), and processDeleteHook() are used to
trigger workflow processes.

Trigger Workflow Manager During Object Insert
The following Module Action Class code shows that when an object is inserted, the workflow manager
is notified, whether there are workflow processes defined to execute on this object or not.

Trigger Workflow Manager During Object Update
The following Module Action Class code shows that when an object is updated, the workflow
manager is notified, whether there are workflow processes defined to execute on this object or not.

// Retrieve ticket from request
Ticket ticket = (Ticket) context.getFormBean();
// Set server side properties
ticket.setEnteredBy(getUserId(context));
ticket.setModifiedBy(getUserId(context));
boolean isValid = validateObject(context, db, ticket);
if (isValid) {
 boolean recordInserted = ticket.insert(db);
 if (recordInserted) {
 // Trigger the workflow manager
 processInsertHook(context, ticket);
 }
}

#creating workflows

ConcourseSuite Support: Technical Documentation - page 61

Trigger Workflow Manager During Object Deletion
The following Module Action Class code shows that when an object is deleted, the workflow manager
is notified, whether there are workflow processes defined to execute on this object or not.

// Retrieve ticket from request
Ticket ticket = (Ticket) context.getFormBean();
// Set server side properties
ticket.setModifiedBy(getUserId(context));
boolean isValid = validateObject(context, db, ticket);
if (isValid) {
 // Load the previous ticket for comparison
 Ticket previousTicket = new Ticket(db, ticket.getId());
 int resultCount = ticket.update(db);
 if (resultCount == 1) {
 // Get the updated ticket details
 ticket.queryRecord(db, ticket.getId());
 // Trigger the workflow manager
 processUpdateHook(context, previousTicket, ticket);
 }
}

// Load the ticket, given a ticket id
Ticket ticket = new Ticket(db, id);
// Attempt to delete the ticket and any associated ticket documents
boolean recordDeleted = ticket.delete(db, getDbNamePath(context));
if (recordDeleted) {
 // Trigger the workflow manager
 processDeleteHook(context, ticket);
}

•

•

ConcourseSuite Support: Technical Documentation - page 62

isRecordAccessPermitted(context, db, int)
This is a wrapper method that checks record permissions for a user. It checks

Permissions on the record for portal users (a capability available to account contacts)
as they are restricted to only view or add certain information about the account for
which they are a contact.
Permissions for users who may belong to a division or site. Such users are restricted
to access information from their site only. A user who is not assigned a site (i.e., -1)
has access data from all sites. This method is used when there exists a relationship
between an Organization record(which has a siteId) and the record (which may not
have a siteId) for which permissions need to be checked.

 protected static boolean isRecordAccessPermitted(ActionContext context,
Connection db, int tmpOrgId) throws SQLException {
 if (isPortalUser(context)) {
 if (tmpOrgId == getPortalUserPermittedOrgId(context)) {
 return true;
 } else {
 return false;
 }
 } else {
 if ((UserUtils.getUserSiteId(context.getRequest())) != -1) {
 int orgSiteId = Organization.getOrganizationSiteId(db, tmpOrgId);
 if (orgSiteId == UserUtils.getUserSiteId(context.getRequest())) {
 return true;
 } else {
 return false;
 }
 } else {
 // has permission to view records of all sites
 return true;
 }
 }
 }

ConcourseSuite Support: Technical Documentation - page 63

isRecordAccessPermitted(ActionContext, Object)
This is a method that checks record permissions for a user. It checks permissions for users who may
belong to a division or site. Such users are restricted to access information from their site only. A user
who is not assigned a site (i.e., -1) has access data from all sites. This method is used when site
information exists in the record for which permissions need to be checked.

NOTE: This validation uses reflection to examine the getSiteId() method of the object for which record
access needs to be checked, hence it is mandatory for these classes to have the getSiteId method.

 protected static boolean isRecordAccessPermitted(ActionContext context, Object
object) throws Exception {
 int tmpUserSiteId = UserUtils.getUserSiteId(context.getRequest());
 if (tmpUserSiteId != -1) {

 Method method = object.getClass().getMethod(
 "getSiteId", (java.lang.Class[]) null);
 Object result = method.invoke(object, (java.lang.Object[]) null);
 int tmpObjectSiteId = ((Integer) result).intValue();

 if (tmpObjectSiteId == tmpUserSiteId) {
 return true;
 } else {
 return false;
 }
 } else {
 // has permission to view records of all sites
 return true;
 }
 }

1.

ConcourseSuite Support: Technical Documentation - page 64

Build Process
An Ant build script is used for initializing, installing, and upgrading Centric CRM from source. The

same script is used on Linux, Mac, Sun and Windows systems.

Ant Targets
Executing "ant" without any parameters will display a list of ant targets.

Configuration Steps
The build process needs to be configured before ConcourseSuite CRM can be compiled and
deployed.
Each time "ant package" is executed, the build process verifies the environment, alerting you to any
changes that need to be made.
Configuration Steps:

Stop Tomcat

Buildfile: build.xml

usage:
 [echo] ant compile: compile the sources
 [echo] ant test-compile: compile the tests
 [echo] ant test: compile and run the tests using a test database
 [echo] ant test -Dtest=specificTest: compile and run a specific test using a
test database
 [echo] ant package: compile and generate a war
 [echo] ant package-tools: create a distributable tools jar file
 [echo] ant site: generate java docs and web site info
 [echo] ant clean: delete temporary files used in build
 [echo]
 [echo] ant deploy-webapp: deploy the webapp as an exploded directory
 [echo] ant deploy-tomcat: deploy the webapp .war into a running Tomcat
instance
 [echo] ant installdb: install the database from the commandline
 [echo] install.database: just create the tables
 [echo] install.help: just install the help contents
 [echo] ant upgradedb: upgrade the database from the commandline
 [echo]

http://ant.apache.org

2.
3.

4.
5.
6.

ConcourseSuite Support: Technical Documentation - page 65

Run "ant package" to initialize the configuration paths and files
Make changes as requested to the command line environment; then run "ant
package" until successful
Copy the resulting .war file to Tomcat's web apps path
Start Tomcat
Using a browser navigate to the deployed CRM for additional configuration options

Build.Properties
After configuration, all properties are updated and stored in the build.properties file of the file library.

Advanced Configuration (Optional)
Web-based configuration of ConcourseSuite CRM is recommended and is the default setting.
However, this option has an override so that the developer can work with multiple databases based
on virtual hosts.
Without overriding, all requests to the CRM use the exact same settings and database. In this case,
http://127.0.0.1/crm always uses the same database.
When CONTROL=BYPASS_WEB-BASED_APPLICATION_SETUP is uncommented,
ConcourseSuite CRM can use multiple databases based on the virtual host and a mapping in the
[sites] table.

Property Description

SYSTEM.LANGUAGE Default language setting: even though any
locale can be specified, translations and
supporting database data needs to be
available for this to work

DEBUGLEVEL If uncommented, then all application debug
output is sent to system.out

ConcourseSuite Support: Technical Documentation - page 66

•
•
•
•
•
•
•

ConcourseSuite Support: Technical Documentation - page 67

Using the HTTP-XML API
Concursive includes a multi-platform accessible XML API using HTTP for communicating with the
ConcourseSuite CRM server application by third-party applications. The XML API exposes read and
write capabilities to client systems. Essentially, the client posts XML data using a well-formed HTTP
1.1 or 1.0 request to the server and receives a status, as well as any requested records, back in the
response.
For example, you can capture leads or tickets from your existing web site and send them straight into
the CRM. You can also read data from the CRM that can be used in an external application or web
site.
The following sections will provide information on using the HTTP-XML API:

Server Setup for enabling HTTP-XML API
XML API Protocol
XML API Reference
Tools Package (for Java)
XML API for PHP
XML API Examples
FAQ

#server setup for enabling http-xml api
#xml api protocol
#xml api reference
#tools package
#xml api for php
#xml api examples
#faq

1.
2.
3.
4.

ConcourseSuite Support: Technical Documentation - page 68

Server Setup for enabling HTTP-XML API
There are essentially 2 ways of interacting with the remote CRM Server. The server allows a CRM
user to connect to the server remotely and perform data operations on the server. An external client
can also connect to ConcourseSuite and perform data operations. Both the external user and client
are required to authenticate with the server before being allowed to perform operations.

CRM User Mode
An Administrator can configure a CRM User's access to the XML API by setting the User's
[allow_httpapi_access] property to true/false. By default all CRM User's are allowed to access the
API. This allows for Offline and Mobile clients to access a user's own CRM data.
Note: When a user is communicating with the XML API, the 'code' property sent as part of the
authentication token, should correspond to the user's MD5 Hash of the password. This code will be
compared with the user's password in the CRM to validate the user.

Client Mode
Every external client application that needs remote access to ConcourseSuite, should have a
corresponding [sync_client] record. HTTP-XML API Client Manager allows a CRM Administrator to
manage Clients. The admin can add new clients using this interface when required.
The following Client properties are of importance and need to be provided:

type = any arbitrary name that describes the client
version = any arbitrary name that describes the version of the client
enabled = set to 'true' if client needs to be allowed access
code = a string or token that the client will use during authentication

1.

2.

3.
4.
5.
6.
7.
8.
9.

ConcourseSuite Support: Technical Documentation - page 69

XML API Protocol
Both the CRM Server and the Client (Application Client or Mobile User Client) can communicate by
sending XML packets. The Client is required to understand the structure of the XML response, so that
it can process any records sent by the Server.

XML-HTTP
The Client initiates the data transfer procedure by establishing an HTTP/S connection with the
Server. Once the connection is active, the client posts XML data to the Server using HTTP POST.
The Server will process the data and return a status along with any data that was requested.

HTTP Packet
The raw HTTP must include the following:

Request Method set to "POST" along with
http://www.example.com/ProcessPacket.do path
The Host specified with the host name that is used to access the CRM installation;
like www.example.com
Content-Type set to "text/xml"
Content-Length set to the number of characters of the XML being submitted
commit-level set to either "packet" or "transaction", defaults to 'packet'
object-validation set to "true" or "false", default to 'true'
Two (2) empty lines
The XML string, defined in the next section
Optional Cookie information so that additional requests are handled quicker

POST http://www.example.com/ProcessPacket.do HTTP/1.0
Host: www.example.com
Content-Type: text/xml
Context-Length: 11

<xml></xml>

•
•

•

•
•

•
•

1.

ConcourseSuite Support: Technical Documentation - page 70

XML Request Packet
Each time a new HTTP request is made, the Client must include authentication information and one
or more transactions in the body content. The encoding method provided by the Client in the request
will be used in the reponse. If no encoding is specified, then UTF-16 is used by default.

1. Authentication
The Client identifies itself to the server by sending XML authentication information to the server. The
server looks up the client information, and if successful processes the transaction. If authentication
fails, a failed message is returned to the client.
The authentication information includes the following items:

id- The host the client is connecting to
code- If it is a sync client, then provide [sync_client].code else if user, the
MD5(password) Hash
systemId- A Server assigned id to map transactions to (allows for multiple systems to
be interacting)
clientId- Provide only if it is a Client else don't include
username- Provide only if it is a CRM User else don't include

2. Transaction
Within the same request as the authentication information, one or more transactions must be
specified. The transactions describe to the server an action to be performed. For example, the action
could be to insert an object, update an object, or query a list of objects. Depending on the transaction
type, meta data can be included to describe the requested information from the server.
Transactions include the following items:

Meta information to describe data related to the action being performed
The action to perform

An action is composed of the following items:
id- a client supplied transaction id to reference the transaction status responses; the
transaction id is valid only for the given request/response and does not affect other

2.
3.

1.
2.
3.

ConcourseSuite Support: Technical Documentation - page 71

client's requests/responses.
objectName- the object on which an action is to be performed
action- the action to be performed on the object

3. Example Client XML Request

4. XML Response Packet
When the server completes the requested transactions, an XML HTTP response is sent back to the
client. The response includes a status corresponding to each transaction requested by the client, and
any other data pertaining to the requested action.

Status; 0 = Success, Non-Zero = Error
ErrorText; if no error then no text, otherwise a message is provided
Example XML Response

<?xml version="1.0" encoding="UTF-8"?>
<app>
 <authentication>
 <id>www.your-crm-server.com</id>
 <systemId>4</systemId>
 <username>XXX</username>
 < code>** User's MD5 Password< /code>
 </authentication>
 <transaction id="1">
 <meta>
 <property>id</property>
 </meta>
 <account action="insert">
 <name>Dark Horse Ventures</name>
 </account>
 </transaction>
</app>

ConcourseSuite Support: Technical Documentation - page 72

<?xml version="1.0" encoding="UTF-8"?>
<aspcfs>
 <response id="1">
 <status>0</status>
 <errorText/>
 <recordSet name="accountList" count="1">
 <record action="insert">
 <name>Dark Horse Ventures</name>
 </record>
 </recordSet>
 </response>
</aspcfs>

•
•
•
•

ConcourseSuite Support: Technical Documentation - page 73

XML API Reference
Transactions sent as part of the XML packet are processed by the server and the required action is
performed. Each transaction is made up of an action with a corresponding object to perform the
action on.

1. XML Actions
The Client can specify one of the following actions to perform on the object:

insert: Inserts the specified object in the database
update: Updates the specified object in the database
delete: Deletes the specified object from the database
select: Queries the specified object type in the database; a list of objects can be
returned, as well as a subset based on criteria.

2. XML Objects
Each object has a list of properties that can be set, depending on the action. The mapping table
shown below specifies the objects that can be accessed through the XML API. In the mapping table,
the id attribute is the name used to access the object. Each object has a list of properties that can be
set. Some of the properties(fields) reference other tables.
The attributes of a property(field) include:
1. name: The name of the property that can be set
2. alias: Typically used with mapping the client's primary key to the server's. If an alias called 'guid' is
used, then the client's primary key will be compared to the server's primary key. This is essentially
used when a client has to perform synchronization with the server. For more information on the Sync
Protocol and Sync API, refer to the Client - Server Synchronization section.
3. type: The expected value type of the property
4. lookup: Typically used with mapping the client's primary key to the server's; If a lookup attribute is
specified then the value will be looked up in the client-server mapping before the operation is
performed.

•
•
•
•
•
•
•
•
•
•
•
•
•

ConcourseSuite Support: Technical Documentation - page 74

3. XML Object Mapping
The following modules have support for querying objects through the API. Click on a particular
module below to see a list of Objects that belong to the module and the properties that can be
specified for each object via the API.

Lookup Lists
Custom Lookup Lists
Users, Roles & Permissions
Accounts
Contacts (Leads, Employees)
Pipeline
Projects
Products
Help Desk
Quotes
Communications
Documents
Action Plans

#xml api: lookup lists
#xml api: custom lookup lists
#xml api: accounts

•
•
•
•
•
•
•
•

ConcourseSuite Support: Technical Documentation - page 75

XML API: Lookup Lists
Lookup Lists for Account
Lookup Lists for Contacts
Lookup Lists for Roles, Action Lists,Relations&Reports
Lookup Lists for Opportunities & Calls
Lookup Lists for Product Catalogs
Lookup Lists for Tickets
Lookup Lists for Quotes
 Lookup Lists for Campaigns,Tasks &Action Plans

#xml api: lookup lists for account
#xml api: lookup lists for contacts
#xml api: lookup lists for roles, action lists,relations&reports
#xml api: lookup lists for opportunities & calls
#xml api: lookup lists for product catalogs
#xml api: lookup lists for tickets
#xml api: lookup lists for quotes
#xml api: lookup lists for campaigns,tasks &action plans

ConcourseSuite Support: Technical Documentation - page 76

XML API: Lookup Lists for Account
The following lookups for Accounts &Contacts objects can be accessed by the API:

S = Select I = Insert U = Update D = Delete Y = Supported - = N/A NT =Not Tested

Id Mapped
Class

S I U D

lookupAccou
ntTypes

 LookupList - Y NT Y

lookupAccou
ntTypesList

 LookupList Y - - -

lookupAccou
ntSize

 LookupList - Y NT Y

lookupAccou
ntSizeList

 LookupList Y - - -

lookupAccou
ntStage

 LookupList - Y NT Y

lookupAccou
ntStageList

 LookupList Y - - -

ConcourseSuite Support: Technical Documentation - page 77

LookupList

code
description
level
enabled
entered
modified

ConcourseSuite Support: Technical Documentation - page 78

XML API: Lookup Lists for Contacts
The following lookups for Contacts objects can be accessed by the API:

ConcourseSuite Support: Technical Documentation - page 79

Id Mapped
Class

S I U D

lookupConta
ctAddressTy
pes

 LookupList - Y NT Y

lookupConta
ctAddressTy
pes List

 LookupList Y - - -

lookupConta
ctEmailType
s

 LookupList - Y NT Y

lookupConta
ctEmailType
s List

 LookupList Y - - -

lookupConta
ctPhoneTyp
es

 LookupList - Y NT Y

lookupConta
ctPhoneTyp
esList

 LookupList Y - - -

lookupConta
ctSource

 LookupList - Y NT Y

ConcourseSuite Support: Technical Documentation - page 80

S = Select I = Insert U = Update D = Delete Y = Supported - = N/A NT =Not Tested

LookupList

lookupConta
ctSource List

 LookupList Y - - -

lookupConta
ctRating

 LookupList - Y NT Y

lookupConta
ctRatingList

 LookupList Y - - -

code
description
level
enabled
entered
modified

ConcourseSuite Support: Technical Documentation - page 81

XML API: Lookup Lists for Roles, Action

Lists,Relations&Reports
The following lookups for Roles, Action Lists,Relations&Reports objects can be accessed by the API:

ConcourseSuite Support: Technical Documentation - page 82

Id Mapped
Class

S I U D

lookupDepar
tment

 LookupList - Y NT Y

lookupDepar
tment List

 LookupList Y - - -

lookupDelive
ryOptions

 LookupList - Y NT Y

lookupDelive
ryOptionsLis
t

 LookupList Y - - -

lookupEmplo
ymentTypes

 LookupList - Y NT Y

lookupEmplo
ymentTypes
List

 LookupList Y - - -

lookupInstan
tMessenger
Types

 LookupList - Y NT Y

ConcourseSuite Support: Technical Documentation - page 83

lookupInstan
tMessenger
Types List

 LookupList Y - - -

lookupLocal
e

 LookupList - Y NT Y

lookupLocal
eList

 LookupList Y - - -

lookupOrgA
ddressTypes

 LookupList - Y NT Y

lookupOrgA
ddressTypes
List

 LookupList Y - - -

lookupOrgE
mailTypes

 LookupList - Y NT Y

lookupOrgE
mailTypesLi
st

 LookupList Y - - -

lookupOrgP
honeTypes

 LookupList - Y NT Y

ConcourseSuite Support: Technical Documentation - page 84

S = Select I = Insert U = Update D = Delete Y = Supported - = N/A NT =Not Tested

lookupOrgP
honeTypesLi
st

 LookupList Y - - -

lookupSegm
ents

 LookupList - Y NT Y

lookupSegm
entsList

 LookupList Y - - -

 lookupTitle LookupList - Y NT Y

lookupTitleLi
st

 LookupList Y - - -

lookupTextM
essageType
s

 LookupList - Y NT Y

lookupTextM
essageType
sList

 LookupList Y - - -

ConcourseSuite Support: Technical Documentation - page 85

LookupList

code
description
level
enabled
entered
modified

ConcourseSuite Support: Technical Documentation - page 86

XML API: Lookup Lists for Opportunities & Calls
The following Lookups for Opportunities & Calls objects can be accessed by the API:

ConcourseSuite Support: Technical Documentation - page 87

Id Mapped
Class

S I U D

lookupCallTy
pes

org.aspcfs.ut
ils.web.Look
upList

- Y NT Y

lookupCallTy
pesList

org.aspcfs.ut
ils.web.Look
upList

Y - - -

lookupOppor
tunityEnviron
ment

org.aspcfs.ut
ils.web.Look
upList

- Y NT Y

lookupOppor
tunityEnviron
ment List

org.aspcfs.ut
ils.web.Look
upList

Y - - -

lookupOppor
tunityCompe
titors

org.aspcfs.ut
ils.web.Look
upList

- Y NT Y

lookupOppor
tunityCompe
titors List

org.aspcfs.ut
ils.web.Look
upList

Y - - -

ConcourseSuite Support: Technical Documentation - page 88

S = Select I = Insert U = Update D = Delete Y = Supported - = N/A NT =Not Tested

org.aspcfs.utils.web.LookupList

lookupOppor
tunityEventC
ompelling

org.aspcfs.ut
ils.web.Look
upList

- Y NT Y

lookupOppor
tunityEventC
ompellingLis
t

org.aspcfs.ut
ils.web.Look
upList

Y - - -

lookupOppor
tunityBudget

org.aspcfs.ut
ils.web.Look
upList

- Y NT Y

lookupOppor
tunityBudget
List

org.aspcfs.ut
ils.web.Look
upList

Y - - -

code
description
level
enabled
entered
modified

ConcourseSuite Support: Technical Documentation - page 89

ConcourseSuite Support: Technical Documentation - page 90

XML API: Lookup Lists for Product Catalogs
The following Lookups for product Catalogs objects can be accessed by the API:

ConcourseSuite Support: Technical Documentation - page 91

Id Mapped
Class

S I U D

lookupCurre
ncy

org.aspcfs.ut
ils.web.Look
upList

- Y NT Y

lookupCurre
ncyList

org.aspcfs.ut
ils.web.Look
upList

Y - - -

lookupProdu
ctCategoryT
ype

org.aspcfs.ut
ils.web.Look
upList

- Y NT Y

lookupProdu
ctCategoryT
ypeList

org.aspcfs.ut
ils.web.Look
upList

Y - - -

lookupProdu
ctType

org.aspcfs.ut
ils.web.Look
upList

- Y NT Y

lookupProdu
ctTypeList

org.aspcfs.ut
ils.web.Look
upList

Y - - -

ConcourseSuite Support: Technical Documentation - page 92

lookupProdu
ctManufactur
er

org.aspcfs.ut
ils.web.Look
upList

- Y NT Y

lookupProdu
ctManufactur
erList

org.aspcfs.ut
ils.web.Look
upList

Y - - -

lookupProdu
ctFormat

org.aspcfs.ut
ils.web.Look
upList

- Y NT Y

lookupProdu
ctFormatList

org.aspcfs.ut
ils.web.Look
upList

Y - - -

lookupProdu
ctShipping

org.aspcfs.ut
ils.web.Look
upList

- Y NT Y

lookupProdu
ctShippingLi
st

org.aspcfs.ut
ils.web.Look
upList

Y - - -

lookupProdu
ctShipTime

org.aspcfs.ut
ils.web.Look
upList

- Y NT Y

ConcourseSuite Support: Technical Documentation - page 93

lookupProdu
ctShipTimeLi
st

org.aspcfs.ut
ils.web.Look
upList

Y - - -

lookupProdu
ctTax

org.aspcfs.ut
ils.web.Look
upList

- Y NT Y

lookupProdu
ctTaxList

org.aspcfs.ut
ils.web.Look
upList

Y - - -

lookupRecur
ringType

org.aspcfs.ut
ils.web.Look
upList

- Y NT Y

lookupRecur
ringTypeList

org.aspcfs.ut
ils.web.Look
upList

Y - - -

lookupProdu
ctConfResult

org.aspcfs.ut
ils.web.Look
upList

- Y NT Y

lookupProdu
ctConfResult
List

org.aspcfs.ut
ils.web.Look
upList

Y - - -

ConcourseSuite Support: Technical Documentation - page 94

S = Select I = Insert U = Update D = Delete Y = Supported - = N/A NT =Not Tested

org.aspcfs.utils.web.LookupList

lookupProdu
ctKeyword

org.aspcfs.ut
ils.web.Look
upList

- Y NT Y

lookupProdu
ctKeywordLi
st

org.aspcfs.ut
ils.web.Look
upList

Y - - -

code
description
level
enabled
entered
modified

ConcourseSuite Support: Technical Documentation - page 95

XML API: Lookup Lists for Tickets
The following Lookups for Tickets objects can be accessed by the API:

ConcourseSuite Support: Technical Documentation - page 96

Id Mapped
Class

S I U D

lookupTicket
Level

 LookupList - Y NT Y

lookupTicket
LevelList

 LookupList Y - - -

lookupTicket
Source

 LookupList - Y NT Y

lookupTicket
SourceList

 LookupList Y - - -

lookupTicket
Status

 LookupList - Y NT Y

lookupTicket
StatusList

 LookupList Y - - -

lookupTicket
Escalation

 LookupList - Y NT Y

lookupTicket
EscalationLi
st

 LookupList Y - - -

ConcourseSuite Support: Technical Documentation - page 97

S = Select I = Insert U = Update D = Delete Y = Supported - = N/A NT =Not Tested

LookupList

lookupTicket
Cause

 LookupList - Y NT Y

lookupTicket
CauseList

 LookupList Y - - -

lookupTicket
Resolution

 LookupList - Y NT Y

lookupTicket
ResolutionLi
st

 LookupList Y - - -

lookupTicket
State

 LookupList - Y NT Y

lookupTicket
StateList

 LookupList Y - - -

ConcourseSuite Support: Technical Documentation - page 98

code
description
level
enabled
entered
modified

ConcourseSuite Support: Technical Documentation - page 99

XML API: Lookup Lists for Quotes
The following Lookups for Quotes objects can be accessed by the API:

ConcourseSuite Support: Technical Documentation - page 100

Id Mapped
Class

S I U D

lookupQuote
Status

 LookupList - Y NT Y

lookupQuote
StatusList

 LookupList Y - - -

lookupQuote
Type

 LookupList - Y NT Y

lookupQuote
TypeList

 LookupList Y - - -

lookupQuote
Terms

 LookupList - Y NT Y

lookupQuote
TermsList

 LookupList Y - - -

lookupQuote
Source

 LookupList - Y NT Y

lookupQuote
SourceList

 LookupList Y - - -

ConcourseSuite Support: Technical Documentation - page 101

S = Select I = Insert U = Update D = Delete Y = Supported - = N/A NT =Not Tested

LookupList

lookupQuote
Delivery

 LookupList - Y NT Y

lookupQuote
DeliveryList

 LookupList Y - - -

lookupQuote
Condition

 LookupList - Y NT Y

lookupQuote
ConditionList

 LookupList Y - - -

lookupQuote
Remarks

 LookupList - Y NT Y

lookupQuote
Remarks
List

 LookupList Y - - -

ConcourseSuite Support: Technical Documentation - page 102

code
description
level
enabled
entered
modified

ConcourseSuite Support: Technical Documentation - page 103

XML API: Lookup Lists for Campaigns,Tasks

&Action Plans
The following Lookups for Campaigns,Tasks & Action Plans objects can be accessed by the API:

ConcourseSuite Support: Technical Documentation - page 104

Id Mapped
Class

S I U D

lookupSurve
yTypes

 LookupList - Y NT Y

lookupSurve
yTypesList

 LookupList Y - - -

lookupTaskP
riority

 LookupList - Y NT Y

lookupTaskP
riorityList

 LookupList Y - - -

lookupTaskL
oe

 LookupList - Y NT Y

lookupTaskL
oeList

 LookupList Y - - -

lookupTicket
TaskCategor
y

 LookupList - Y NT Y

ConcourseSuite Support: Technical Documentation - page 105

S = Select I = Insert U = Update D = Delete Y = Supported - = N/A NT =Not Tested

LookupList

lookupTicket
TaskCategor
yList

 LookupList Y - - -

lookupDurati
onType

 LookupList - Y NT Y

lookupDurati
onTypeList

 LookupList Y - - -

code
description
level
enabled
entered
modified

•
•
•
•
•
•

ConcourseSuite Support: Technical Documentation - page 106

XML API: Custom Lookup Lists
Custom Lookup Lists for Users,Accounts,Contacts
Custom Lookup Lists for Projects
Custom Lookup Lists for Products
Custom Lookup Lists for tickets & quotes
Custom Lookup Lists for Communications & Custom Fields
Custom Lookup Lists for Document Stores & Action Plans

#xml api: custom lookup lists for users,accounts,contacts
#xml api: custom lookup lists for projects
#xml api: custom lookup lists for products
#xml api: custom lookup lists for tickets & quotes
#xml api: custom lookup lists for communications & custom fields
#xml api: custom lookup lists for document stores & action plans

ConcourseSuite Support: Technical Documentation - page 107

XML API: Custom Lookup Lists for

Users,Accounts,Contacts
The following Custom lookups for Accounts ,Contacts objects can be accessed by the API:

ConcourseSuite Support: Technical Documentation - page 108

Id Mapped
Class

S I U D

lookupIndust
ryList

CustomLook
upList

Y - - -

lookupSiteId
List

CustomLook
upList

Y - - -

lookupStage
List

CustomLook
upList

Y - - -

lookupConta
ctTypesList

CustomLook
upList

Y - - -

lookupSubS
egmentList

CustomLook
upList

Y - - -

contactLead
SkippedMap
List

CustomLook
upList

Y - - -

contactLead
ReadMapLis
t

CustomLook
upList

Y - - -

ConcourseSuite Support: Technical Documentation - page 109

cfsNoteLinkL
ist

CustomLook
upList

Y - - -

contactType
LevelsList

CustomLook
upList

Y - - -

lookupListsL
ookupList

CustomLook
upList

Y - - -

categoryEdit
orLookupList

CustomLook
upList

Y - - -

userGroupM
apList

CustomLook
upList

Y - - -

lookupCallPr
iorityList

CustomLook
upList

Y - - -

lookupCallR
eminderList

CustomLook
upList

Y - - -

lookupCallR
esultList

CustomLook
upList

Y - - -

ConcourseSuite Support: Technical Documentation - page 110

S = Select I = Insert U = Update D = Delete Y = Supported - = N/A

lookupOppor
tunityTypesL
ist

CustomLook
upList

Y - - -

opportunityC
omponentLe
velsList

CustomLook
upList

Y - - -

lookupAcces
sTypesList

CustomLook
upList

Y - - -

ConcourseSuite Support: Technical Documentation - page 111

XML API: Custom Lookup Lists for Projects
The following Custom lookups for Projects objects can be accessed by the API:

ConcourseSuite Support: Technical Documentation - page 112

Id Mapped
Class

S I U D

lookupProjec
tActivityList

CustomLook
upList

Y - - -

lookupProjec
tPriorityList

CustomLook
upList

Y - - -

lookupProjec
tStatusList

CustomLook
upList

Y - - -

lookupProjec
tLoeList

CustomLook
upList

Y - - -

lookupProjec
tRoleList

CustomLook
upList

Y - - -

lookupProjec
tCategoryLis
t

CustomLook
upList

Y - - -

lookupNews
TemplateList

CustomLook
upList

Y - - -

projectPermi
ssionsList

CustomLook
upList

Y - - -

ConcourseSuite Support: Technical Documentation - page 113

S = Select I = Insert U = Update D = Delete Y = Supported - = N/A

projectAccou
ntsList

CustomLook
upList

Y - - -

projectTicket
CountList

CustomLook
upList

Y - - -

ConcourseSuite Support: Technical Documentation - page 114

XML API: Custom Lookup Lists for Products
The following Custom lookups for Products objects can be accessed by the API:

ConcourseSuite Support: Technical Documentation - page 115

Id Mapped
Class

S I U D

packagePro
ductsMapLis
t

CustomLook
upList

Y - - -

productCatal
ogCategory
MapList

CustomLook
upList

Y - - -

productOptio
nMapList

CustomLook
upList

Y - - -

productOptio
nBooleanList

CustomLook
upList

Y - - -

productOptio
nFloatList

CustomLook
upList

Y - - -

productOptio
nTimestamp
List

CustomLook
upList

Y - - -

productOptio
nIntegerList

CustomLook
upList

Y - - -

ConcourseSuite Support: Technical Documentation - page 116

S = Select I = Insert U = Update D = Delete Y = Supported - = N/A

productOptio
nTextList

CustomLook
upList

Y - - -

productKeyw
ordMapList

CustomLook
upList

Y - - -

productCate
goryMapList

CustomLook
upList

Y - - -

ConcourseSuite Support: Technical Documentation - page 117

XML API: Custom Lookup Lists for tickets &

quotes
The following Custom lookups for tickets & quotes objects can be accessed by the API:

ConcourseSuite Support: Technical Documentation - page 118

Id Mapped
Class

S I U D

ticketPriority
List

CustomLook
upList

Y - - -

ticketLinkPro
jectList

CustomLook
upList

Y - - -

quoteGroup
List

CustomLook
upList

Y - - -

quoteProduc
tOptionBoole
anList

CustomLook
upList

Y - - -

quoteProduc
tOptionFloat
List

CustomLook
upList

Y - - -

quoteProduc
tOptionTime
stampList

CustomLook
upList

Y - - -

quoteProduc
tOptionInteg
erList

CustomLook
upList

Y - - -

ConcourseSuite Support: Technical Documentation - page 119

S = Select I = Insert U = Update D = Delete Y = Supported - = N/A

quoteProduc
tOptionTextL
ist

CustomLook
upList

Y - - -

ticketSeverit
yList

CustomLook
upList

Y - - -

ConcourseSuite Support: Technical Documentation - page 120

XML API: Custom Lookup Lists for

Communications & Custom Fields
The following Custom lookups for tickets & quotes objects can be accessed by the API:

ConcourseSuite Support: Technical Documentation - page 121

Id Mapped
Class

S I U D

customField
LookupList

org.aspcfs.ut
ils.web.Cust
omLookupLi
st

Y - - -

excludedRec
ipientList

org.aspcfs.ut
ils.web.Cust
omLookupLi
st

Y - - -

campaignLis
tGroupsList

org.aspcfs.ut
ils.web.Cust
omLookupLi
st

Y - - -

activeCamp
aignGroupsL
ist

org.aspcfs.ut
ils.web.Cust
omLookupLi
st

Y - - -

campaignSu
rveyLinkList

org.aspcfs.ut
ils.web.Cust
omLookupLi
st

Y - - -

ConcourseSuite Support: Technical Documentation - page 122

activeSurvey
AnswerAvgL
ist

org.aspcfs.ut
ils.web.Cust
omLookupLi
st

Y - - -

fieldTypesLi
st

org.aspcfs.ut
ils.web.Cust
omLookupLi
st

Y - - -

searchField
ElementList

org.aspcfs.ut
ils.web.Cust
omLookupLi
st

Y - - -

messageTe
mplateList

org.aspcfs.ut
ils.web.Cust
omLookupLi
st

Y - - -

savedCriteri
aElementList

org.aspcfs.ut
ils.web.Cust
omLookupLi
st

Y - - -

taskLinkCont
actList

org.aspcfs.ut
ils.web.Cust
omLookupLi
st

Y - - -

ConcourseSuite Support: Technical Documentation - page 123

S = Select I = Insert U = Update D = Delete Y = Supported - = N/A

taskLinkTick
etList

org.aspcfs.ut
ils.web.Cust
omLookupLi
st

Y - - -

taskLinkProj
ectList

org.aspcfs.ut
ils.web.Cust
omLookupLi
st

Y - - -

taskCategor
yProjectList

org.aspcfs.ut
ils.web.Cust
omLookupLi
st

Y - - -

taskCategor
yLinkNewsLi
st

org.aspcfs.ut
ils.web.Cust
omLookupLi
st

Y - - -

moduleField
CategoryLin
kList

org.aspcfs.ut
ils.web.Cust
omLookupLi
st

Y - - -

ConcourseSuite Support: Technical Documentation - page 124

XML API: Custom Lookup Lists for Document

Stores & Action Plans
The following Custom lookups for Document Stores & Action Plans objects can be accessed by the
API:

ConcourseSuite Support: Technical Documentation - page 125

Id Mapped
Class

S I U D

documentSt
oreRoleList

CustomLook
upList

Y - - -

documentSt
orePermissi
onList

CustomLook
upList

Y - - -

documentSt
orePermissi
onsList

CustomLook
upList

Y - - -

lookupStepA
ctionsList

CustomLook
upList

Y - - -

actionPlanC
onstantsList

CustomLook
upList

Y - - -

stepActionM
apList

CustomLook
upList

Y - - -

actionStepA
ccountTypes
List

CustomLook
upList

Y - - -

ConcourseSuite Support: Technical Documentation - page 126

S = Select I = Insert U = Update D = Delete Y = Supported - = N/A

documentSt
orePermissi
onCategoryL
ist

CustomLook
upList

Y - - -

ConcourseSuite Support: Technical Documentation - page 127

XML API: Accounts
The following objects can be accessed by the API:

Id Mapped
Class

S I U D

account Organization - Y Y Y

accountList Organization
List

Y - - -

organization
Address

Organization
Address

- Y Y Y

organization
AddressList

Organization
AddressList

Y - - -

organization
EmailAddres
s

Organization
EmailAddres
s

- Y Y Y

organization
EmailAddres
sList

Organization
EmailAddres
sList

Y - - -

organization
PhoneNumb
er

Organization
PhoneNumb
er

- Y Y Y

organization
PhoneNumb
erList

Organization
PhoneNumb
erList

Y - - -

ConcourseSuite Support: Technical Documentation - page 128

S = Select I = Insert U = Update D = Delete Y = Supported - = N/A

Organization

OrganizationAddress

orgId (guid)
name
accountNumber
url
revenue
employees
notes
ticker
entered
enteredBy (references:[[XML API: Users, Roles & Permissions|user]])
modified
modifiedBy (references:[[XML API: Users, Roles & Permissions|user]])
enabled
industry (references: lookupIndustry)
owner (references:[[XML API: Users, Roles & Permissions|user]])
contractEndDate
alertDate
alertText
nameSalutation
nameLast
nameFirst
nameMiddle
nameSuffix
importId
statusId
alertDateTimeZone
contractEndDateTimeZone
trashedDate
source (references: lookupContactSource)
rating (references: lookupContactRating)
potential
segmentId (references: lookupSegments)
subSegmentId (references: lookupSubSegment)
accountSize (references: lookupAccountSize)
siteId (references: lookupSiteId)
businessNameTwo
yearStarted
stageId (references: lookupAccountStage)

ConcourseSuite Support: Technical Documentation - page 129

OrganizationEmailAddress

OrganizationPhoneNumber

id (guid)
orgId (references: account)
type (references: lookupOrgAddressTypes)
streetAddressLine1
streetAddressLine2
streetAddressLine3
streetAddressLine4
city
state
country
zip
entered
enteredBy (references: [[XML API: Users, Roles & Permissions|user]])
modified
modifiedBy (references: [[XML API: Users, Roles & Permissions|user]])
primaryAddress
county
latitude
longitude

id (guid)
orgId (references: account)
type (references: lookupOrgEmailTypes)
email
enteredBy (references: [[XML API: Users, Roles & Permissions|user]])
modifiedBy (references: [[XML API: Users, Roles & Permissions|user]])
entered
modified
primaryEmail

id (guid)
orgId (references: account)
number
extension
type (references: lookupOrgPhoneTypes)
enteredBy (references: [[XML API: Users, Roles & Permissions|user]])
modifiedBy (references: [[XML API: Users, Roles & Permissions|user]])
entered
modified
primaryNumber

ConcourseSuite Support: Technical Documentation - page 130

•
•
•
•
•

•

ConcourseSuite Support: Technical Documentation - page 131

Tools Package
ConcourseSuite CRM Tools is a small java library (.jar) which encapsulates the HTTP and XML code
so that it's easier to write applications that talk with Concursive's products. For example, you can
capture leads or tickets from your existing web site and send them straight into ConcourseSuite CRM
by using the library's DataRecord and "save" action method.
You can also read data from the CRM by using the "load" method. The following actions are
supported:

DataRecord.INSERT
DataRecord.SELECT
DataRecord.UPDATE
DataRecord.DELETE
DataRecord.GET_DATETIME

Requirements
The crm_tools.jar can be used with any Java 1.5 or newer application. You will need to have the
Apache Commons Codec-API in your classpath.
A "client" will need to be configured under ConcourseSuite's Admin module to provide remote access
to CRM data.
The client records are located in the database and can be modified manually:

In the [sync_client] table, an arbitrary client should be inserted with a plain-text
password in the [code] field. This will be used in the client authentication code.

Typical Usage

ConcourseSuite Support: Technical Documentation - page 132

import com.concursive.crm.api.client.CRMConnection;
import com.concursive.crm.api.client.DataRecord;

// Client ID must already exist in target CRM system and is created
// under Admin -> Configure System -> HTTP-XML API Client Manager
int clientId = 1;

// Establish connectivity information
CRMConnection crm = new CRMConnection();
crm.setUrl("http://www.example.com/crm");
crm.setId("www.example.com");
crm.setCode("password");
crm.setClientId(clientId);

// Start a new transaction
crm.setAutoCommit(false);

DataRecord contact = new DataRecord();
contact.setName("contact");
contact.setAction(DataRecord.INSERT);
contact.setShareKey(true);
contact.addField("nameFirst", bean.getNameFirst());
contact.addField("nameLast", bean.getNameLast());
contact.addField("company", bean.getCompanyName());
contact.addField("title", bean.getTitle());
contact.addField("source", bean.getSourceId());
contact.addField("isLead", "true");
contact.addField("accessType", 2);
contact.addField("leadStatus", 1);
contact.addField("enteredBy", 0);
contact.addField("modifiedBy", 0);
crm.save(contact);

// Transform the email
DataRecord email = new DataRecord();
email.setName("contactEmailAddress");
email.setAction(DataRecord.INSERT);
email.addField("email", bean.getEmail());
email.addField("contactId", "$C{contact.id}");
email.addField("type", 1);
email.addField("enteredBy", 0);
email.addField("modifiedBy", 0);
crm.save(email);

// Transform the phone
DataRecord phone = new DataRecord();
phone.setName("contactPhoneNumber");
phone.setAction(DataRecord.INSERT);
phone.addField("number", bean.getPhone());
phone.addField("contactId", "$C{contact.id}");
phone.addField("type", 1);
phone.addField("enteredBy", 0);
phone.addField("modifiedBy", 0);
crm.save(phone);

boolean result = crm.commit();

System.out.println(crm.getLastResponse());

ConcourseSuite Support: Technical Documentation - page 133

•
•

ConcourseSuite Support: Technical Documentation - page 134

XML API for PHP
Using the XML API, data in ConcourseSuite CRM can be retrieved using various clients. While a
toolset has not been made specifically for PHP, the following has been used to interact with
ConcourseSuite CRM and PHP.
In the example, the XML creation is left up to the application to implement, although an XML library is
strongly encouraged so that the XML is encoded properly.

Some things to keep in mind...

The XML needs to be well-formed
Errors in the response provide some answers... see the FAQ

<?
// Site to post to
$server = "www.example.com"
$path = "/crm/ProcessPacket.do"
// Begin the transfer
$socket = fsockopen($server, 80);
if (!$socket) {
// error: could not connect to server
// return
} else {
// Post the XML document
$request = "POST " . $path . " HTTP/1.0\r\n" .
"Host: " . $server . "\r\n" .
"Content-Type: text/xml\r\n" .
"Content-Length: " . strlen($xmlDocument) . "\r\n\r\n" .
$xmlDocument;
if (!fputs($socket, $request, strlen($request))) {
// error: could not write to server
// return
}
$response = '';
while ($data = fread($socket, 32768)) {
$response .= $data;
}
fclose($socket);
if ($response = '') {
// error: no response from server
// return
} else {
// review the response for status
}
}
?>

ConcourseSuite Support: Technical Documentation - page 135

XML API Examples
The following examples provide an overview of the XML API use. Each example provides both the
code snippet that can used with the Tools Library or the actual xml sent as part of the request packet.

QUERY
1. Fetch a list of ALL Accounts with details requested
2. Fetch all Accounts OWNED by a particular user
3. Fetch a list of lookup items

ADD
1. Add Contact & related information
2. Add an Opportunity and an associated Opportunity Component

SYNC
1. Sync a list of Accounts within a particular time period

#tools package
#fetch a list of all accounts with details requested
#fetch all accounts owned by a particular user
#fetch a list of lookup items
#add contact & related information
#add an opportunity and an associated opportunity component
#sync a list of accounts within a particular time period

ConcourseSuite Support: Technical Documentation - page 136

Fetch a list of ALL Accounts with details requested

Using Centric Tools

XML

// Establish connectivity information
CRMConnection crm = new CRMConnection();
crm.setUrl("http://www.example.com/crm");
crm.setId("www.example.com");
crm.setCode("password");
crm.setClientId(clientId);

//Add Meta Info with fields required
ArrayList meta = new ArrayList();
meta.add("orgId");
meta.add("name");
meta.add("url");
meta.add("notes");
meta.add("industryName");
meta.add("alertDate");
meta.add("alertText");
meta.add("revenue");
meta.add("ticker");
meta.add("accountNumber");
meta.add("potential");
meta.add("nameFirst");
meta.add("nameMiddle");
meta.add("nameLast");
crm.setTransactionMeta(meta);

DataRecord accountsTable = new DataRecord();
accountsTable.setName("accountList");
accountsTable.setAction(DataRecord.SELECT);

crm.load(accountsTable);

ConcourseSuite Support: Technical Documentation - page 137

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<app>
 <authentication>
 <id>www.example.com</id>
 <systemId>4</systemId>
 < code>+++ CLIENT'S PASSWORD +++< /code>
 <clientId>+++ CLIENT ID ALREADY ESTABLISHED +++</clientId>
 </authentication>
 <transaction id="1">
 <meta>
 <property>orgId</property>
 <property>name</property>
 <property>url</property>
 <property>notes</property>
 <property>industryName</property>
 <property>alertDate</property>
 <property>alertText</property>
 <property>revenue</property>
 <property>ticker</property>
 <property>accountNumber</property>
 <property>potential</property>
 <property>nameFirst</property>
 <property>nameMiddle</property>
 <property>nameLast</property>
 </meta>
 <accountList action="select"/>
 </transaction>
</app>

ConcourseSuite Support: Technical Documentation - page 138

Fetch all Accounts OWNED by a particular user

Using Centric Tools

XML

// Establish connectivity information
CRMConnection crm = new CRMConnection();
crm.setUrl("http://www.example.com/crm");
crm.setId("www.example.com");
crm.setCode("password");
crm.setClientId(clientId);

//Add Meta Info with fields required
ArrayList meta = new ArrayList();
meta.add("orgId");
meta.add("name");
meta.add("url");
meta.add("notes");
crm.setTransactionMeta(meta);

DataRecord accountsTable = new DataRecord();
accountsTable.setName("accountList");
accountsTable.setAction(DataRecord.SELECT);
accountsTable.addField("ownerId", +++ USER ID +++);
crm.load(accountsTable);

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<app>
 <authentication>
 <id>www.yourorg.com</id>
 <systemId>4</systemId>
 < code>+++ CLIENT'S PASSWORD +++< /code>
 <clientId>+++ CLIENT ID ALREADY ESTABLISHED +++</clientId>
 </authentication>
 <transaction id="1">
 <meta>
 <property>orgId</property>
 <property>name</property>
 <property>url</property>
 <property>notes</property>
 </meta>
 <accountList action="select">
 <ownerId>+++ USER ID +++</ownerId>
 </accountList>
 </transaction>
</app>

ConcourseSuite Support: Technical Documentation - page 139

ConcourseSuite Support: Technical Documentation - page 140

Fetch a list of lookup items

Using Centric Tools

XML

// Establish connectivity information
CRMConnection crm = new CRMConnection();
crm.setUrl("http://www.example.com/crm");
crm.setId("www.example.com");
crm.setCode("password");
crm.setClientId(clientId);

//Add Meta Info with fields required
ArrayList meta = new ArrayList();
meta.add("code");
meta.add("description");
crm.setTransactionMeta(meta);

DataRecord lookupIndustryTypes = new DataRecord();
lookupIndustryTypes.setName("lookupIndustryList");
lookupIndustryTypes.setAction(DataRecord.SELECT);
lookupIndustryTypes.addField("tableName", "lookup_industry");
lookupIndustryTypes.addField("uniqueField", "code");
lookupIndustryTypes.addField("property", "code");
lookupIndustryTypes.addField("property", "description");
crm.load(lookupIndustryTypes);

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<app>
 <authentication>
 <id>www.example.com</id>
 <systemId>4</systemId>
 <code>+++ CLIENT'S PASSWORD +++</code>
 <clientId>+++ CLIENT ID ALREADY ESTABLISHED +++</clientId>
 </authentication>
 <transaction id="1">
 <meta>
 <property>code</property>
 <property>description</property>
 </meta>
 <lookupIndustryList action="select">
 <tableName>lookup_industry</tableName>
 <uniqueField>code</uniqueField>
 <property>code</property>
 <property>description</property>
 </lookupIndustryList>
 </transaction>
</app>

ConcourseSuite Support: Technical Documentation - page 141

ConcourseSuite Support: Technical Documentation - page 142

Add Contact & related information

Using Centric Tools

ConcourseSuite Support: Technical Documentation - page 143

// Establish connectivity information
CRMConnection crm = new CRMConnection();
crm.setUrl("http://www.example.com/crm");
crm.setId("www.example.com");
crm.setCode("password");
crm.setClientId(clientId);

DataRecord contact = new DataRecord();
contact.setName("contact");
contact.setAction(DataRecord.INSERT);
contact.setShareKey(true);
contact.addField("nameFirst", bean.getNameFirst());
contact.addField("nameLast", bean.getNameLast());
contact.addField("company", bean.getCompanyName());
contact.addField("title", bean.getTitle());
contact.addField("source", bean.getSourceId());
contact.addField("isLead", "true");
contact.addField("accessType", 2);
contact.addField("leadStatus", 1);
contact.addField("enteredBy", 0);
contact.addField("modifiedBy", 0);
crm.save(contact);

//email
DataRecord email = new DataRecord();
email.setName("contactEmailAddress");
email.setAction(DataRecord.INSERT);
email.addField("email", bean.getEmail());
email.addField("contactId", "$C{contact.id}");
email.addField("type", 1);
email.addField("enteredBy", 0);
email.addField("modifiedBy", 0);
crm.save(email);

//phone
DataRecord phone = new DataRecord();
phone.setName("contactPhoneNumber");
phone.setAction(DataRecord.INSERT);
phone.addField("number", bean.getPhone());
phone.addField("contactId", "$C{contact.id}");
phone.addField("type", 1);
phone.addField("enteredBy", 0);
phone.addField("modifiedBy", 0);
crm.save(phone);

DataRecord address = new DataRecord();
address.setName("contactAddress");
address.setAction(DataRecord.INSERT);
address.addField("streetAddressLine1", bean.getStreetAddressLine1());
address.addField("streetAddressLine2", bean.getStreetAddressLine2());
address.addField("streetAddressLine3", bean.getStreetAddressLine3());
address.addField("streetAddressLine4", bean.getStreetAddressLine4());
address.addField("contactId", "$C{contact.id}");
address.addField("type", 1);
address.addField("city", bean.getCity());
address.addField("state", bean.getState());
address.addField("zip", bean.getZip());
address.addField("country", bean.getCountry());
address.addField("enteredBy", 0);
address.addField("modifiedBy", 0);
address.addField("primaryAddress", true);
crm.save(address);

boolean result = crm.commit();

ConcourseSuite Support: Technical Documentation - page 144

XML

boolean result = crm.commit();

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<app>
 <authentication>
 <id>www.example.com</id>
 <systemId>4</systemId>
 < code>+++ CLIENT'S PASSWORD +++< /code>
 <clientId>+++ CLIENT ID ALREADY ESTABLISHED +++</clientId>
 </authentication>
 <transaction id="1">
 <contact action="insert" shareKey="true">
 <nameFirst>John</nameFirst>
 <nameLast>Doe</nameLast>
 <company>XXX</company>
 <title>XXX</title>
 <accessType>2</accessType>
 <enteredBy>0</enteredBy>
 <modifiedBy>0</modifiedBy>
 </contact>
 <contactEmailAddress action="insert">
 <email>john.doe@xxx.com</email>
 <contactId>$C{contact.id}</contactId>
 <type>1</type>
 <enteredBy>0</enteredBy>
 <modifiedBy>0</modifiedBy>
 </contactEmailAddress>
 <contactPhoneNumber action="insert">
 <number>8888888888</email>
 <contactId>$C{contact.id}</contactId>
 <type>1</type>
 <enteredBy>0</enteredBy>
 <modifiedBy>0</modifiedBy>
 </contactPhoneNumber>
 <contactAddress action="insert">
 <contactId>$C{contact.id}</contactId>
 <type>1</type>
 <streetAddressLine1>200 Yoakum Pkwy</streetAddressLine1>
 <streetAddressLine2>Apt 444</streetAddressLine2>
 <streetAddressLine3></streetAddressLine3>
 <streetAddressLine4></streetAddressLine4>
 <city>Alexandria</city>
 <state>VA</state>
 <zip>22345</zip>
 <country>USA</country>
 <enteredBy>0</enteredBy>
 <modifiedBy>0</modifiedBy>
 <primaryAddress>true</primaryAddress>
 </contactAddress>
 </transaction>
</app>

ConcourseSuite Support: Technical Documentation - page 145

ConcourseSuite Support: Technical Documentation - page 146

Add an Opportunity and an associated Opportunity

Component

Using Centric Tools

// Establish connectivity information
CRMConnection crm = new CRMConnection();
crm.setUrl("http://www.example.com/crm");
crm.setId("www.example.com");
crm.setCode("password");
crm.setClientId(clientId);

//Add Meta Info with fields required
ArrayList meta = new ArrayList();
meta.add("description");
crm.setTransactionMeta(meta);

DataRecord opportunity = new DataRecord();
opportunity.setName("opportunity");
opportunity.setAction(DataRecord.INSERT);
opportunity.setShareKey(true);
opportunity.addField("description", "Opportunity Header");
opportunity.addField("manager", 1); //refers to user with id 1 in CCRM
opportunity.addField("accountLink", 1); //refers to account with id 1 in CCRM
opportunity.addField("accessType", 9); //indicates it is a Public opportunity
record
opportunity.addField("enteredBy", 1);
opportunity.addField("modifiedBy", 1);
crm.save(opportunity);

DataRecord oppComponent = new DataRecord();
oppComponent.setName("opportunity");
oppComponent.setAction(DataRecord.INSERT);
oppComponent.addField("description", "Opportunity Component");
oppComponent.addField("owner", 1); //refers to user with id 1 in CCRM
oppComponent.addField("guess", 800000);
oppComponent.addField("type", "N"); //indicates it is a new opportunity component;
corresponds to 'Source' on the add form
oppComponent.addField("stage", 1); //corresponds to 'Prospecting' lookup entry in
lookup_stage
oppComponent.addField("closeProb", 50);
oppComponent.addField("closeDate", "09/14/2007");
oppComponent.addField("closeDateTimeZone", "GMT-5 Easter US");
oppComponent.addField("terms", "15"); //indicates the time period
oppComponent.addField("units", "W"); //indicates the time period units; W for
Weeks; M for Months
oppComponent.addField("enteredBy", 1); //refers to user with id 1 in CCRM
oppComponent.addField("modifiedBy", 1); //refers to user with id 1 in CCRM
crm.save(oppComponent);

boolean result = crm.commit();

ConcourseSuite Support: Technical Documentation - page 147

XML

<app>
 <authentication>
 <id>127.0.0.1</id>
 <systemId>4</systemId>
 <clientId>1</clientId>
 < code>792fef441691aa41135a15c1478a5ee4< /code>
 </authentication>
 <transaction>
 <meta>
 <property>description</property>
 </meta>
 <opportunity action="insert" shareKey="true">
 <description>Opportunity Header</description>
 <manager>1</manager>
 <accountLink>1</accountLink>
 <accessType>9</accessType>
 <enteredBy>0</enteredBy>
 <modifiedBy>0</modifiedBy>
 </opportunity>
 <opportunityComponent action="insert">
 <headerId>$C{opportunity.id}</headerId>
 <owner>1</owner>
 <description>Component Description</description>
 <guess>80</guess>
 <type>N</type>
 <stage>1</stage>
 <closeProb>50</closeProb>
 <closeDate>09/14/2007</closeDate>
 <closeDateTimeZone>"GMT-5 Eastern US"</closeDateTimeZone>
 <terms>15</terms>
 <units>W</units>
 <enteredBy>0</enteredBy>
 <modifiedBy>0</modifiedBy>
 </opportunityComponent>
 </transaction>
</app>

ConcourseSuite Support: Technical Documentation - page 148

Sync a list of Accounts within a particular time

period

Using Centric Tools

XML

// Establish connectivity information
CRMConnection crm = new CRMConnection();
crm.setUrl("http://www.example.com/crm");
crm.setId("www.example.com");
crm.setCode("password");
crm.setClientId(clientId);
//Specify anchors
crm.setLastAnchor("2007-09-02 12:00:00.000");
crm.setNextAnchor("2007-09-22 12:00:00.000");

//Add Meta Info with fields required
ArrayList meta = new ArrayList();
meta.add("name");
meta.add("accountNumber");
meta.add("contractEndDate");
crm.setTransactionMeta(meta);

DataRecord accounts = new DataRecord();
accounts.setName("accountList");
accounts.setAction(DataRecord.SYNC);
crm.load(accounts);

ConcourseSuite Support: Technical Documentation - page 149

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<app>
 <authentication>
 <id>127.0.0.1</id>
 <systemId>4</systemId>
 <clientId>1</clientId>
 < code>792fef441691aa41135a15c1478a5ee4< /code>
 <lastAnchor>2007-09-02 12:00:00.000</lastAnchor>
 <nextAnchor>2007-09-22 12:00:00.000</nextAnchor>
 </authentication>
 <transaction>
 <meta>
 <property>name</property>
 <property>accountNumber</property>
 <property>contractEndDate</property>
 </meta>
 <accountList action="sync"/>
 </transaction>
</app>

ConcourseSuite Support: Technical Documentation - page 150

FAQ

Server Responses
1. When I send an XML Packet to the server, I get "Not Authorized" response?
2. I am sending an UPDATE request and I receive a "conflict" in the response?

SELECT API Call
1. I need to restrict the records sent from the server by setting some filters. How do I do that?
2. I am setting some filters in the SELECT api call, but the server is sending all the records back.

Why?

#i am sending an update request and i receive a "conflict" in the response?
#i need to restrict the records sent from the server by setting some filters. how do i do that?
#i am setting some filters in the select api call, but the server is sending all the records back. why?
#i am setting some filters in the select api call, but the server is sending all the records back. why?

ConcourseSuite Support: Technical Documentation - page 151

I am sending an UPDATE request and I receive a

"conflict" in the response?
When you call an "UPDATE" method, the corresponding update method in the object specified is
called to execute an UPDATE SQL statement. The sql uses the 'modified' sent in the xml and
compares it with the 'modified' that currently exists in the database for this object. The reason for this
comparison is to avoid 2 users simultaneously updating the record and also to avoid someone
overwriting the record with stale data.
Let me try to provide an example for the stale data. Say you and I use the XML api to query the same
"Task" object today. Now on both of our individual remote systems the task object exists as it was
today. Say tomorrow I send an UPDATE request XML packet for this task. If it was updated
successfully then the version of the task on the server and on my system match. Your system would
have a stale version of the task. Now if you try to update the task without looking at the latest values
available for this task at the server, then the server should reject your task UPDATE packet.
It would be the responsibility of the client using the API to keep track of the 'modified' timestamp
against the object that was fetched from the server. Whenever the client tries to update the object, it
should send the 'modified' value that it has. If the object at the server has already been updated by
someone else then the 'modified' will no longer match and server will report a conflict, in which case
the client should first query the object for the latest values (including modified timestamp of the object
at the server) and send the update back which would then work.
So in your packet please include the <modified>[timestamp that you had fetched using a select in the
past for this object]</modified>

ConcourseSuite Support: Technical Documentation - page 152

I need to restrict the records sent from the server

by setting some filters. How do I do that?
Filters that can be set for a SELECT XML API call should be properties that are defined in the list
class (Contact email addresses corresponds to ContactEmailAddressList which extends
EmailAddressList). These properties are used in the java source files to restrict the records. Also the
name specified in the API call should match the member present in the List class. There is no
documentation which describes the filters available in each List class that can be applied. Hence the
developer will need to look at the CRM source code to determine the fields. The documentation will
be updated in the future to specify what filters are available for a particular class.
Here is an XML API example where a list of contact email addresses are requested from the server,
but returned records need to belong to a particular contact.

Here is a snapshot of what the com.concursive.crm.web.modules.contacts.dao.EmailAddressList
Class looks like

//Add Meta Info
ArrayList meta = new ArrayList();
meta.add("email");
meta.add("typeName");
meta.add("primaryEmail");
crm.setTransactionMeta(meta);

DataRecord addresses = new DataRecord();
addresses.setName("contactEmailAddressList");
addresses.setAction(DataRecord.SELECT);
addresses.addField("contactId", *** SPECIFY CONTACT ID ***); //filter addresses for
a particular contact
crm.load(addresses);

boolean result = crm.commit();
System.out.println("RESPONSE: " + crm.getLastResponse());

Object[] objects =
crm.getRecords("com.concursive.crm.web.modules.contacts.dao.ContactEmailAddress").t
oArray();
ContactEmailAddress[] addresses = new ContactEmailAddress[objects.length];
for (int i = 0; i < objects.length; i++) {
 addresses[i] = (ContactEmailAddress) objects[i];
}

ConcourseSuite Support: Technical Documentation - page 153

When the API receives the xml packet, it sets the 'contactId' filter and populates the
ContactEmailAddressList object, which results in a list of ContactEmailAddress objects whose
contactId matches the one specified by the user. The other properties can also be set for filtering the
addresses.

public class EmailAddressList extends Vector {

 protected int orgId = -1;
 protected int type = -1;
 protected int contactId = -1;
 protected String username = null;
 protected String emailAddress = null;
 //instance info
 protected int instanceId = -1;

 public void setContactId(int tmp) {
 this.contactId = tmp;
 }

 public void setContactId(String tmp) {
 this.contactId = Integer.parseInt(tmp);
 }

1.

2.

ConcourseSuite Support: Technical Documentation - page 154

I am setting some filters in the SELECT api call,

but the server is sending all the records back.

Why?
To Remember...

Filters that can be set for a SELECT XML API call should be properties that are
defined in the list class (Contact email addresses corresponds to
ContactEmailAddressList which extends EmailAddressList). These properties are
used in the java source files to restrict the records. Also the name specified in the
API call should match the member present in the List class. There is no
documentation which describes the filters available in each List class that can be
applied. Hence the developer will need to look at the CRM source code to determine
the fields. The documentation will be updated in the future to specify what filters are
available for a particular class.
The API reads the filter specified in the call and tries to set it on the list object (eg:
ContactEmailAddressList). If the filter was incorrectly spelled or is not defined in the
List class and is not used in the query available in the List class, then the
ContactEmailAddressList will get executed with no filters and will hence return all
the records. This is the way the API works today.

ConcourseSuite Support: Technical Documentation - page 155

Importing Data
A list of people and companies can be imported in several ways. During the installation of a system,
the most common are importing .csv files and programmatically using the Java reader/writer
applications.

Importing .CSV Files
The Leads, Contacts, and Accounts modules have a web-based import capability. If the user has
permission, then a list of people and/or organizations can be imported using the web-based wizard.
The import tool will associate multiple contacts with the same organization name to the same
account.
Including column names in the first row makes it much simpler to manage field mappings, as shown
below.

Using Reader/Writer
The Reader/Writer applications can read data from various input formats and write data to various
output formats. These applications can interface with files, databases, web services, etc.
To import related data, for example Accounts, Contacts, Opportunities, and Notes, a Reader can be
developed and executed.
The tools include a Writer that knows how to write data into the CRM, and comes with some basic
Readers.
Readers are Java programs that send data to a Writer and associates data during the reading/writing
process. The reader and writer are configured and executed by the Transfer application.

#org.aspcfs.apps.transfer.transfer

ConcourseSuite Support: Technical Documentation - page 156

org.aspcfs.apps.transfer.Transfer
The Transfer application begins the process of migrating data from a DataReader to a DataWriter.
Transfer is responsible for loading configuration data, instantiating objects, and executing and
monitoring the data import process.
The following is included in the Centric CRM build.xml file, which can be altered and used for
importing Account Contacts and related data...

ConcourseSuite Support: Technical Documentation - page 157

 <!-- Account Contact Importer based on CSV spec -->
 <target name="import.accountcontacts" depends="init">
 <fail unless="arg1">Missing arg1: CSV file to import not specified</fail>
 <fail unless="arg2">Missing arg2: Virtual Host to import to not
specified</fail>
 <fail unless="arg3">Missing arg3: Import code not specified</fail>
 <mkdir dir="${build.pref.dir}"/>
 <copy file="${pref.dir}/cfs/transfer/import-accountcontacts.xml"
 todir="${build.pref.dir}" overwrite="true"/>
 <replace file="${build.pref.dir}/import-accountcontacts.xml"
 token="@PROPERTY.FILE@" value="${pref.dir}/cfs/transfer/import-
mappings.xml"/>
 <replace file="${build.pref.dir}/import-accountcontacts.xml"
 token="@CSV.FILE@" value="${arg1}"/>
 <replace file="${build.pref.dir}/import-accountcontacts.xml"
 token="@URL@" value="${arg2}"/>
 <replace file="${build.pref.dir}/import-accountcontacts.xml"
 token="@ID@" value="${arg3}"/>
 <replace file="${build.pref.dir}/import-accountcontacts.xml"
 token="@CODE@" value="${arg4}"/>
 <replace file="${build.pref.dir}/import-accountcontacts.xml"
 token="@SYSTEM.ID@" value="4"/>
 <java classname="org.aspcfs.apps.transfer.Transfer" fork="yes"
failonerror="yes">
 <classpath>
 <path refid="cfs2.classpath"/>
 <fileset dir="${CENTRIC_HOME}/WEB-INF/lib">
 <include name="**/*.jar"/>
 </fileset>
 </classpath>
 <arg value="${build.pref.dir}${fs}import-accountcontacts.xml"/>
 </java>
 </target>

•
•
•
•
•
•
•

ConcourseSuite Support: Technical Documentation - page 158

Development Process
ConcourseSuite development includes making enhancements and changes to the core web

application framework, modules, components, supporting applications, database schemas, and

installation and upgrade scripts.
In order to benefit all community members, a shared, collaborative process provides up-to-date
project status and documentation. Members can see what features are being considered and
developed, as well as contribute insight and expertise.
The following Project Management web site tools are extensively used throughout the
ConcourseSuite project:

Project announcements and news to stay up-to-date with current project events
Resource allocation and contact management to see who is working on what
Reference information and specifications
Discussion groups for sharing ideas and gathering feedback
Issue tracking for reporting and working through defects and enhancements
Document repository for storing related project material
Source code repository (Subversion) for centralizing code

Development begins with a well-understood project description, then typically steps through user
needs, planning, specifications, design elements, code development, review, QA, testing,
documentation and installation.
Use the following steps to ensure a successful contribution to the code.

Well-Understood Project Description
By preparing a well-understood project description, you will be certain to stay on track and allow
others to understand what you are setting out to accomplish.
The description should include an introduction of what is being proposed, the goals that are to be
achieved with this project, the scope of work to be done, and a high-level outline of deliverables.

Legal Issues

#application architecture
#application architecture
#modules
#application components
http://subversion.tigris.org

1.

2.
3.

•
•
•
•

4.

ConcourseSuite Support: Technical Documentation - page 159

Any legal issues related to the project should be documented. These can be in reference to code
ownership or regulatory compliance.
Remember, code contributions to ConcourseSuite cannot use GPL code or GPL libraries due to
licensing restrictions. Typical acceptable open-source licenses include Apache Software License,
LGPL and BSD.

User Needs
Next, outline the business, system, and server environment in which the software will be used. For
example, the implementation of a sophisticated graphing system might be demanding on processor
power. However, if this process is only expected to be executed once per night, then the
specifications might not require a queue.
Make sure to outline the stakeholders and the actors. These can be named individuals or roles that
they play. List their needs and what they have in common. It's important to understand who will be
using the system and why.
Specifications will be driven by these expectations.

Software Specifications
Before coding can truly begin, specifications need to be generated and agreed upon.

Use Cases -- Specify how the stakeholders and actors will interact with the system.
You should already know who these users are and why they need to use the
system, but now you will show exactly what they can do in the system. These will
include use-cases by functional area and by priority. Associate business objects
with the roles as well.
Functional Requirements -- List the feature set and implementation priorities.
Non-Functional Requirements -- List the items that will have an impact and
explain how to resolve them.

Reliability/uptime
Security
Performance and scalability
Maintainability and upgradeability

Environmental Requirements

•
•
•
•

1.
2.
3.
4.

1.
•
•
•
•
•
•
•
•

2.
•
•
•

ConcourseSuite Support: Technical Documentation - page 160

Hardware
Software
Programming Interfaces
Data import/export

Project Plan
Once the scope of the project is understood, the work to be done should be broken down into
sections with time estimates so that a schedule can be devised. Risks that might impact the project
should also be specified.
A project plan will serve as an outline for assessing milestones.

Design
System Architecture: components, site-map
User Interface: content model, wireframes, prototypes
Persistence/Database Schema
Security Model

QA
Identify quality goals and rate them by priority

Functionality
Usability
Security
Reliability
Efficiency
Scalability
Operability
Maintainability

Implement a QA Strategy
Community review
Unit testing
System testing

1.
2.
3.

1.
2.
3.

ConcourseSuite Support: Technical Documentation - page 161

Testing
Business objects and operation
Features
Use-cases

Documentation
Installation/Upgrade
Release notes
User Guide

Upgrade and Installation

•
•
•
•
•
•

•
•

ConcourseSuite Support: Technical Documentation - page 162

Developer References
The following links will provide you with relevant information on various subjects that relate to Centric
CRM and Java development.

The Java Language Specification
The Java Tutorial
Sun Guide to Writing JavaDoc Comments
Java2 Platform Standard Edition API Specification
Java2 Platform Enterprise Edition API Specification for Servlets and JSPs
JSP Documentation

Additional Resources:
PostgreSQL Documentation and Manuals
Subversion Book

Please review the Coding Best Practices section for various tips and reminders about coding against

the Centric CRM framework.

http://java.sun.com/docs/books/jls
http://java.sun.com/docs/books/tutorial/index.html
http://java.sun.com/j2se/javadoc/writingdoccomments
http://java.sun.com/api/index.html
http://java.sun.com/api/index.html
http://java.sun.com/products/jsp/index.html
http://www.postgresql.org/docs
http://svnbook.org
#coding best practices

•

•

•

•

ConcourseSuite Support: Technical Documentation - page 163

Coding Best Practices
The following tips will help achieve the best performance, the best security, and the easiest
maintenance...
These are from the experts:

At most, obtain a single connection from the database connection pool; multiple
connections can result in a deadlock
Instead of using servletContext.getRealPath("/"), use servletContext.getResource("/");
This avoids errors when containers return null
Assume that no data can be written to the deployed webapp directory; instead use the
fileLibrary and write servlet actions to stream data to and from the location
Avoid thread locking in loops -- make the variable that the loop depends upon
"volatile"; additionally add a sleep in the waiting loop

•
•
•
•
•

ConcourseSuite Support: Technical Documentation - page 164

Installation
The installation, configuration, maintenance and upgrade of ConcourseSuite is intended to be as
simple as possible.
The following information is being copied from the "CRM Installation, Setup and Maintenance" Guide
that is available with the the ConcourseSuite download. It's currently incomplete here...

Steps for a successful Linux Installation
Steps for a successful Mac OSX Installation
Steps for a successful Windows Installation
Setting up a Database Server
Additional installation steps to consider

#steps for a successful linux installation
#steps for a successful mac osx installation
#steps for a successful windows installation
#setting up a database server
#additional installation steps to consider

ConcourseSuite Support: Technical Documentation - page 165

Steps for a successful Linux Installation
1. Download and install Oracle Java JRE or JDK 6.0; gcc-java does not work and is bundled with

some Linux distributions; The latest versions of ConcourseSuite work with Java 7 and Tomcat 7.

ConcourseSuite 6.0 is aligned with Java 6 while ConcourseSuite 5.0 is aligned with Tomcat 5.5 up to

5.5.25.
2. Download and install Tomcat stable "Core" from http://tomcat.apache.org ; Apache Tomcat is

bundled with some Linux distributions and fails if it was compiled with gcc-java
3. Depending on the total memory of your system, typically set Tomcat’s memory to half of the server
by setting the following environment variable (directly in the startup.sh file):

4. Enable software graphics rending, or else ConcourseSuite CRM will fail, by setting the following
environment variable (directly in the startup.sh file).

5. Download and copy the ConcourseSuite CRM application (crm.war) into Tomcat’s "webapps"
directory
6. Setup a service to automatically have Tomcat start and stop during startup and shutdown,
according to Tomcat’s documentation; the user that starts Tomcat must have a home directory as this
is where Java stores preferences for Java applications

Permissions for the Tomcat User
The Java API tries to store a preference in the user's home directory. If the user that runs Tomcat
does not have a home directory, then after a restart the user will be prompted to configure the
application again. Choosing the same path reloads the existing configuration.

export JAVA_OPTS="-Xms512 -Xmx512m -XX:PermSize=64m \
-XX:MaxPermSize=128m"

For Tomcat 5.5.27 with older CRM versions only
export CATALINA_OPTS="-Djava.awt.headless=true \
-Dorg.apache.jasper.compiler.Parser.STRICT_QUOTE_ESCAPING=false"

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://tomcat.apache.org

1.

2.
3.

ConcourseSuite Support: Technical Documentation - page 166

If this occurs, then in the Tomcat startup script, you can add a variable called CATALINA_OPTS, or
use an environment variable, with a directory that the tomcat user does have access to...
CATALINA_OPTS="-Djava.awt.headless=true \
-Djava.util.prefs.userRoot=/opt/concursive/crm/fileLibrary/userPrefs \
-Djava.util.prefs.systemRoot=/opt/concursive/crm/fileLibrary/systemPrefs"
1. java.awt.headless is used for any server generated graphics
2. the other two specify the directory to write the prefs to (and must already exist with the correct
permissions).

Notes about gcc-java
GCJ supports most of the Java 1.4 libraries plus some 1.5 additions, but not all. This causes
ConcourseSuite CRM to break. If you are using a Linux distribution with gcj then you can take the
following steps after installing Sun Java and Apache Tomcat (do not use the versions included with
Linux):

Overwrite (or rename) the existing bin/java command by creating a soft link to Sun's
bin/java
Update /etc/init.d/tomcat with the user that should be running Tomcat
Make changes to /etc/ant.conf (if using ConcourseSuite CRM source)

ConcourseSuite Support: Technical Documentation - page 167

Steps for a successful Mac OSX Installation
1. Download and install Tomcat 6 stable "Core" from http://tomcat.apache.org/download-60.cgi
2. Depending on the total memory of your system, typically set Tomcat’s memory to half of the server
by setting the following environment variable (in startup.sh):

3. Download and copy the ConcourseSuite CRM binary (crm.war) file from

http://www.concursive.com into Tomcat’s "webapps" directory
4. Setup a service to automatically have Tomcat start and stop during startup and shutdown

export JAVA_OPTS="-Xms512 -Xmx512m -XX:PermSize=64m -XX:MaxPermSize=128m"

http://tomcat.apache.org/download-60.cgi
http://www.concursive.com

1.
2.

3.
4.

ConcourseSuite Support: Technical Documentation - page 168

Steps for a successful Windows Installation
Download and install the Sun Java 6.0 from http://www.java.com
Download and install Tomcat 6 stable "Core" - Windows Executable from

http://tomcat.apache.org/download-60.cgi; depending on the total memory of your

system, typically set Tomcat’s memory to half of the server using Tomcat’s

configuration editor
Using the Windows Services Control Panel, stop the "Apache Tomcat" service
Download and copy the ConcourseSuite CRM binary (crm.war) file from

http://www.concursive.com into Tomcat’s "webapps" directory -- usually located in

C:\Program Files\Apache Software\Tomcat\webapps

http://www.java.com
http://tomcat.apache.org/download-60.cgi
http://www.concursive.com

•
•

•
•

•
•
•

•

ConcourseSuite Support: Technical Documentation - page 169

Setting up a Database Server

PostgreSQL
PostgreSQL on Linux
PostgreSQL on Windows

IBM DB2
IBM DB2 or DB2 Express-C on Windows
IBM DB2 or DB2 Express-C on Linux

Microsoft SQL Server
Microsoft SQL Server 2005 or 2005 Express
Microsoft SQL Server 2000
Microsoft SQL Server DE (MSDE)

One$DB / DaffodilDB
One$DB on any platform

Firebird DB

MySQL

Apache Derby

1.

2.

ConcourseSuite Support: Technical Documentation - page 170

Additional installation steps to consider
Change Tomcat port to 80 in server.xml (either integrate with Apache Web Server or
turn off Apache Web server if Tomcat will be using port 80)
Obtain and install an SSL certificate to run Centric CRM on port 443

1.

2.
3.
4.

5.

6.

7.

ConcourseSuite Support: Technical Documentation - page 171

Developing a ConcourseSuite Module
Adding a module to ConcourseSuite involves several items depending on the requirements and
integration the module has with the rest of the system.
If a new module is being added, start with skeleton code of the Action Class and JSPs, configure the
ConcourseSuite framework, then iteratively add functionality.
Adding or updating a module includes the following steps:

Determine the framework model that best fits the immediate and anticipated

development
Code the module action class
Code the JSPs
Add the module Action Class details and JSPs to cfs-config.xml; now
ConcourseSuite will know how to map URL requests to Action Classes and JSPs
Add a Main Menu item to cfs-modules.xml, listing ALL action names that have
access to the module; now ConcourseSuite will show the menu item in the Main
Menu for all actions specified
Insert the module permissions and preferences into the [permission_category] and
[permission] tables; now the module will be recognized for permissions and
configuration in ConcourseSuite
Create install and upgrade scripts

#concoursesuite framework model
#code action classes
#create install and upgrade scripts

ConcourseSuite Support: Technical Documentation - page 172

ConcourseSuite Framework Model
The ConcourseSuite framework currently utilizes three (3) action class-JSP design models. Model 1
is the simplest and is typical when developing new features. Model 2 consolidates potentially
duplicate code at the JSP level by combining form data and re-using the JSP with minor additional
logic. Model 3 introduces a Shared Action Class that can be called from other Action Classes when
action class code needs to be re-used.

Model 1
The controller executes an Action Class, the Action Class returns a result which calls a standalone
JSP. A different JSP is required for showing a list of items, an input form, and a detail page.

Model 2
The controller executes an Action Class, the Action Class returns a result which calls a shared JSP.
Typically a shared JSP is used when presenting an input form that is used for initially inserting data or
for modifying data in multiple modules. The JSP may have some basic logic to show the user the
word “Save” or the word “Update.” This model adds reusability to Model 1.

ConcourseSuite Support: Technical Documentation - page 173

Model 3
The controller executes an Action Class, the Action Class requires the generation of Lookup Lists and
other form data and returns a result which calls a standalone JSP. Typically this model is used when
two completely different modules require the same form to be generated, but in a different user
context. In this case, the module specific Action Class is linked to a Shared Action Class, and then
returns a module specific JSP.

ConcourseSuite Support: Technical Documentation - page 174

ConcourseSuite Support: Technical Documentation - page 175

Setup Site-Based Permissions for objects
Users have site identifiers that identifies the site (a.k.a. division, territory) that they belong to. A user's
site restricts the user to manage (i.e., view, add, edit and delete, based on module based
permissions) information that belong to the same site that he or she is member of. The site
information is stored in several tables in the 'site_id' column in the database and a siteId attribute in
the classes. A database record with a null site_id and object with siteId is -1 refer to items for which
site information is not recorded. For information on how sites affect user permissions on various
objects refer to the section on Territories.

Contact and User (access table) Site Dependency
The access table has a column site_id to store the site that a user belongs to. As you may be aware,
all users, and by inference, the records in the access table relate to a contact record. It is mandatory
that the value of the site_id in the access table be the same as the value of the site_id in the
corresponding contact table. Keeping the the values consistant requires additional maintenance
because it reduces the way the tables are normalized, however, this decision has been taken keeping
in mind several performance and response time issues.

Contact and Account (organization table) Site Dependency
The Organization table has a column site_id to store the site that an account belongs to. By
inference, the records in the database that relate to the organization table belong to the same site as
the organization. It is mandatory that the value of the site_id of account contacts in the contact table
be the same as the value of the site_id in the corresponding organization table. Keeping the the
values consistant requires additional maintenance because it reduces the way the tables are
normalized, however, this decision has been taken keeping in mind several performance and
response time issues.

Site information in other tables
Several other tables like usergroups, actionplan, etc have a site_id. For e.g., the user_group table
stores site_id and this information is used to restrict the membership of the group, the actionplan
table has a site_id that restricts whether it can be associated with a specific, ticket, account or lead
(contact). If new tables that you may add require that site information be stored, we urge think of two
options, (1) if the site information can be inferred from a related organization, contact or access table
do not add a site_id column to the table unless performance (i.e., response time due to additional
joins) degrades performance, (2) if the table is used to store administrative data (e.g., usergroups,

ConcourseSuite Support: Technical Documentation - page 176

categories, etc.,) that does not relate to relavant tables that store site information, add the site_id
column.

Checking user access permissions on Site related

information
User objects are cached in the application and this cached information is compared against all
required records using the overloaded isRecordAccessPermitted(...)1, 2 method in the

CFSModule.java class. To insure that the validation is secure it is neccessary that the object not be

validated against a visible siteId parameter in the URL. This is in addition to UI validations that

prevent site related business logic from being violated. This additional check is required as data in

ConcourseSuite CRM can be made persistant using means other than the UI, such as the XML-RPC

API.

http://www.centriccrm.com/ProjectManagement.do?command=ProjectCenter§ion=Wiki&pid=58&subject=isRecordAccessPermitted%28context%2C+db%2C+int%29
http://www.centriccrm.com/ProjectManagement.do?command=ProjectCenter§ion=Wiki&pid=58&subject=isRecordAccessPermitted%28ActionContext%2C+Object%29

•
•
•

•
•

•
•

ConcourseSuite Support: Technical Documentation - page 177

Use Lookup Lists
Lookup lists are used to minimize redundant data in the database; they are also used within an
application to limit and display choices to the user. By using the LookupList class, you can easily add
new lookup lists to the application cache and user's can modify them using the administrative lookup
list editor.

Lookup List Database Table Design
The fields required for a simple lookup list include:

code -- the unique primary key
description -- the value to appear in the lookup list
default_item -- indicates if this value should be selected by default when first
displayed
level -- the order in which the value should be displayed
enabled -- indicates whether this value should be displayed to the user or not

Notes:
The sequence name should be specified, instead of using the database's default
Sequence names can be up to 31 characters

To install your new lookup list into ConcourseSuite CRM, see the section on creating install and

upgrade scripts.

Instantiating in an Action Class

CREATE SEQUENCE lookup_step_actions_code_seq;
CREATE TABLE lookup_step_actions (
 code INTEGER DEFAULT nextval('lookup_step_actions_code_seq') NOT NULL PRIMARY
KEY,
 description VARCHAR(300) NOT NULL,
 default_item BOOLEAN DEFAULT false,
 "level" INTEGER DEFAULT 0,
 enabled BOOLEAN DEFAULT true
);

#create install and upgrade scripts
#create install and upgrade scripts

ConcourseSuite Support: Technical Documentation - page 178

Lookup lists can be instantiated and cached by using the systemStatus object to access the list.
Once retrieved, the list can be used in the request, but must not be modified because it is shared.

A lookup list can also be loaded directly from the database and manipulated before being used in a
JSP.

Accessing from a JSP
With the LookupList object in the request, the method getHtmlSelect("formFieldName", defaultId)
can be used to render an HTML Select field with the options.

The LookupList object contains both enabled and disabled items, however only the enabled items will
be shown. The exception is that if the form object is set to a disabled item, the disabled item will be
included in the Lookup List with an (X) next to its value to alert the user that a disabled item is being
used. The user can then optionally change the value to an enabled value, or leave the existing

// Retrieve Lookup List using the cache
SystemStatus systemStatus = this.getSystemStatus(context);
LookupList list = systemStatus.getLookupList(db, "lookup_step_actions");
// Add the lookup list to the request to be used by a JSP
context.getRequest().setAttribute("stepActionsLookupList", list);

LookupList list = new LookupList(db, "lookup_step_actions");
context.getRequest().setAttribute("stepActionsLookupList", list);

<jsp:useBean id="stepActionsLookupList" class="org.aspcfs.utils.web.LookupList"
scope="request"/>
<tr class="containerBody">
 <td class="formLabel">
 <dhv:label name="sales.step.action">Step Action</dhv:label>
 </td>
 <td>
 <%= stepActionsLookupList.getHtmlSelect("stepAction",
otherBean.getStepActionId()) %>
 </td>
</tr>

ConcourseSuite Support: Technical Documentation - page 179

disabled value.

ConcourseSuite Support: Technical Documentation - page 180

Object Validator
ConcourseSuite CRM provides various user-input forms which allow a user to add new content or edit
existing data in the CRM. Based on the business rules that govern a particular object, the object
should have certain required data associated with it at any point in time. As an example, any Ticket in
the system should be associated with a specific Account and it's Contact.
Certain forms are designed to encapsulate a particular object and therefore provide form validation.
On form submission, the object represented by the form is auto-populated and fed to the Object
Validator, before it can be successfully stored in the database. As the name suggests, the Object
Validator performs object validation and verifies if the object satisfies all the rules that it should
adhere to, based on the business rules defined for that specific object.
If the object is successfully validated, then it is stored in the database, else the form is returned to the
user for review and to re-submit.
com.concursive.crm.web.controller.utils.ObjectValidator;
When a new form that corresponds to a bean is introduced in ConcourseSuite CRM, the action to
which the form is posted to, when a user submits it, should call the following method to validate the
object.
ObjectValidator.validate(SystemStatus, Connection, Object)
Most of the errors or warnings thrown by a form that corresponds to a bean, are represented by the
following constants defined in the object validator. Each constant denotes a particular error/warning
and is used to determine the message to be displayed when the form is returned back to the user.
1. REQUIRED_FIELD
2. IS_BEFORE_TODAY
3. PUBLIC_ACCESS_REQUIRED
4. INVALID_DATE
5. INVALID_NUMBER
6. INVALID_EMAIL
7. INVALID_NOT_REQUIRED_DATE

ConcourseSuite Support: Technical Documentation - page 181

8. INVALID_EMAIL_NOT_REQUIRED
9. INVALID_ENTRY

ConcourseSuite Support: Technical Documentation - page 182

Register Module Reports
Reports can be installed as part of a new system or as an upgrade to an existing system.

Registering reports for a new system
1. Go into permissions_en_US.xml and locate the category for which you want to install the report
under
2. Make sure the category has an attribute: reports="true"
3. At the bottom of the category, you can duplicate an existing report entry, or create a new one from
scratch... the format is:

4. The permission attribute of report allows a user with the given permission to execute the report;
use type="user" as this is not implemented
5. Copy the report file into the source repository, into: src/jasper_reports (using a .xml extension and
not .jrxml)
6. Install the database from scratch using "ant installdb" and the new report will appear

Registering reports in an existing system
1. Make sure the steps above are complete as this sets up the environment
2. Run "ant deploy" to copy the report and new code into your CRM
3. Make an upgrade script, based on: src/sql/upgrade/2006-08-29-script02-ananth.bsh; make sure to
change the categoryId to the correct module's constant categoryId
4. Execute "ant upgradedb", specify the database and script names, the report will now be registered
in an existing system

<report file="report_file_name.xml" type="user" permission="myhomepage-tasks"
title="Short report title" description="Longer report title"/>

1.

2.

3.

4.

1.

2.

3.

5.
6.

ConcourseSuite Support: Technical Documentation - page 183

Adding Portlets
The following steps assume that ConcourseSuite CRM has been deployed and that you want to
tightly couple a portlet with the CRM.
The integrated portlets have access to the ConcourseSuite CRM database as well as the CRM
application, system, and user objects. This allows the portlets to access key framework items and
redirect to crm modules, something that is difficult with jsr-168 alone. This approach enables
delivering a single application with embedded portlets that work on the CRM with supported web
application servers.

Register the portlet for use with ConcourseSuite CRM
Add the contents of your portlet's web.xml file to the main web.xml file. You will see
loads of examples of portlet deployment declarations there. (we are working with
Tomcat 7 so that this requirement will no longer be necessary in a future CRM
release)
Add the contents of your portlet's portlet.xml file to the main portlet.xml file. Again
you will see many examples of this in the portlet.xml file.
If you want your portlet to be user-managable through the web interface, then add
an entry for your portlet to icelet_(your language).xml file. You'll see examples in the
existing icelet...xml file. This step is not required for typical portlets.
Explode your portlet's war file someplace. You'll need to copy every dependency for
your portlet to the webapp directory. Following are the steps:

Copy all the JSPs to their proper location under the Tomcat root
directory for the web app.
Copy all the libraries that your portlet needs to the WEB-INF/lib
directory of the web app. You're on your own at resolving any class
loader issues that get introduced by the inclusion of your portlet's
libraries in the CRM classpath.
Copy your portlet's classes into the webapps WEB-INF/classes
directory. That directory does not exist by default. Your portlet
introduces it to the Tomcat class loader mechanism. (or use a .jar
and place in WEB-INF/lib which does exist)

Startup Tomcat
If you registered your portlet for management by an Admin, log in as an
administrator and go the to the Admin module where you must add your portlet to a
dashboard or some custom tabs for a module.

1.
2.
3.

1.

2.

3.

4.

5.

ConcourseSuite Support: Technical Documentation - page 184

Integration with Asterisk
ConcourseSuite CRM can make outbound phone calls from an Asterisk extension, and can display
screen-pops through an XMPP server for inbound phone calls.

Initial Configuration
Setup an Asterisk Server
Enable the Asterisk manager configuration entry to allow port listening by a user
Configure the CRM with the Asterisk server properties

Sample manager.conf:

Inbound Phone Calls
This capability requires the additional configuration of an XMPP Server. When ConcourseSuite CRM
is alerted to an incoming phone call by Asterisk, the following steps are taken to alert the user with an
instant message; if any of them fail, then no alert is made:

ConcourseSuite CRM checks the user list for a valid user with an extension
receiving the call
ConcourseSuite CRM checks to see if this user has a Jabber instant message
address
ConcourseSuite CRM looks up the incoming phone number, based on the caller ID
details, for a contact that the user has access to
ConcourseSuite CRM checks to see if the user is logged into the XMPP server and
is listed as available
If necessary, the ConcourseSuite CRM Jabber user will request that the target user
allow them to be added to their roster

[general]
enabled = yes
port = 5038
bindaddr = 0.0.0.0
;displayconnects = yes

[crm]
secret = crm
read = system,call,log,verbose,command,agent,user
write = system,call,log,verbose,command,agent,user

6.

ConcourseSuite Support: Technical Documentation - page 185

ConcourseSuite CRM sends the IM with a link to the contact record

Outbound Phone Calls
The first iteration of this capability simply places a red phone icon next to phone numbers that can be
dialed. When the user selects the phone icon

, ConcourseSuite CRM prompts which extension the user is currently at, then proceeds to place a
call. The user's phone will ring, then Asterisk will continue placing the call.
Additional dialed calls during the user session will not prompt for the user's extension.

•
•
•

•
•

•

•
•
•

•

•

ConcourseSuite Support: Technical Documentation - page 186

Action Plan Development
Action Plans have many useful capabilities and are being extended throughout. This section is
intended to introduce you to the technical side of action plans.

Action Plans
Action Plans are made of a series of steps (activities) and each step can provide a particular type of
action that a user can perform while working on that particular step. Action Steps can be further
configured to enforce certain behaviour when the user is working on it. Action Plans can be a useful
tool in preparing a business plan and tie it with existing objects in ConcourseSuite CRM. Today
Action Plans can be tied with 'Accounts' or 'Tickets', but can easily be extended to associate with
other objects.
The "User Guide" is a good source of information on how to setup Action Plan Templates as an
Administrator, so that Users can work thorough an Action Plan. The following pointers briefly
introduce the way Action Plans work

An Action Plan is made of one or more Action Phases
An Action Phase has one or more Action Steps
An Action Plan Template can be setup by the Admin and is associated with a
particular module For e.g. 'Accounts'
Every Account can now have one or more Account Action Plans
When an Account Action Plan is created, a copy of the Action Plan Template is
created and linked with the Account for the user to work through the plan
An Action Step can be configured during setup to specify its behaviour (type of action,
required etc) and ultimately the way the user would interact with the Step.

Action Plan Database Schema
The Action Plan schema comprises of the following main database relations:

action_plan (ActionPlan) -- represents an Action Plan Template
action_phase (ActionPhase) -- represents an Action Phase Template
action_step (ActionStep) -- represents an Action Step Template
action_plan_work (ActionPlanWork) -- copy of the Action Plan Template for the user
to work with
action_phase_work (ActionPhaseWork) -- copy of the Action Phase Template for the
user to work with

•

•

•

•

•

•

•

•
•

ConcourseSuite Support: Technical Documentation - page 187

action_item_work (ActionItemWork) -- copy of the Action Step Template for the user
to work with

Action Plan Module Constants
There are several constants that are defined in Action Plans (ActionPlan) that allow the developer to
associate the plan with certain modules and to enforce certain behaviour. All of the Action Plan
Module Constants are available in the the database relation action_plan_constants. Each Constant
refers to a particular module.

action_plan_editor_lookup refers to a particular constant that makes the Editor
available under that module
action_plan refers to a particular constant that makes the Action Plan available under
that module
step_action_map refers to a particular constant that makes this Step Action available
under the module's Action Plan

Action Plan UI
The Action Plan User Inteface is made of various sections with varying complexity. Several JSPs &
Custom Taglib Handlers are used to deliver the content and user interaction. Each section is briefly
explained below.

Phase Indicator section displays all the phases that make up the plan in a row
format. The current phase in the plan is highlighted.
Plan Details displays information about the Plan itself. Information displayed here
includes Manager, Assignee, Prospect Name, Date the plan became active on etc.
Plan Activities section displays each Phase and all the steps that make up the
phase. The current phase and the current step that the user needs to work on is
highlighted. User interacts with the plan by checking off a step if it is complete. Each
step might have a particular action that the user needs to do before he can mark a
step as complete. The JSP ensures that the current step in the plan is written out in
such a way that appropriate

Additional items:
Developing Action Plan Steps
Building Action Plan Reports

ConcourseSuite Support: Technical Documentation - page 188

•
•

•

•

•

•

ConcourseSuite Support: Technical Documentation - page 189

Adding Action Plan Support to Modules
Action Plans are made of a series of steps (activities) and each step can provide a particular type of
action that a user can perform while working on that particular step. Action Steps can be further
configured to enforce certain behaviour when the user is working on it. Action Plans can be a useful
tool in preparing a business plan and tie it with existing objects in ConcourseSuite CRM. Today
Action Plans can be tied with 'Accounts' or 'Tickets', but can easily be extended to associate with
other objects. For more technical information on Action Plans, see Action Plan Development.
Here we describe how one can add Action Plan support for Leads module. A developer needs to
perform the following changes to support Action Plans.

Admin support for Leads Action Plans
Action Plan support in the Leads module

Admin Module: Leads Action Plans
When the Admin navigates to ‘Configure Modules > Leads’ a new configuration item ‘Action Plan
Editor’ should be displayed.
When the admin clicks on ‘Action Plan Editor’ the ‘Leads > Action Plan Editors’ page needs to be
displayed. The admin can edit the action plans that are associated with Leads. Then the admin can
proceed to add and configure new Action Plans and review existing ones similar to ‘Admin >
Configure Modules > Accounts > Action Plan Editors > Action Plans’

Add a new permission sales-leads-action-plans for Lead Action Plans with VAED
attributes. Add the permission under “Leads” in permissions_en_US.xml. Provide a
BSH upgrade script that will insert this permission into the database.
Set the ‘Leads’ module to have action plans by providing ‘actionPlans="true"’ attribute
for category ‘Leads’ in permissions_en_US.xml. Provide a BSH script which will
enable existing systems to have Lead Action Plans.
Specify a new Constant in ActionPlan.java for LEADS = 711071244 as ‘leads’. Add a
<record> element for ‘action_plan_constants’ in lookuplists_en_US.xml with ‘leads’
data. Provide a BSH script similar to 2005-09-12-script01-partha.bsh to add this
record to an existing system based on the dictionary available.
When the user is working through an action plan, each step in the plan can have a
particular type of user action tied to it. There is a predefined pool of available user
actions that can be used while configuring an action step. The developer needs to
determine the subset of these actions that are visible to the admin while configuring
Lead Action Plans & Steps. Provide a BSH script which defines the various actions

#action plan development

•

•

•

•

•
•
•
•
•

ConcourseSuite Support: Technical Documentation - page 190

available while configuring Action Steps for Lead Action Plans. Refer to 2005-09-16-
script01-partha.bsh. The Lead step actions will be the subset that is available for
Account Action Plans. So the section under Accounts Mappings in the bsh should be
provided.
The LEADS constant must be used for action_plan.link_object_id when adding action
plan templates for Leads in the Admin section. When adding action plans for a
particular Lead, the action_plan_work.link_module_id and
action_item_work.link_module_id should be set using the LEADS constant.

Leads Module: Action Plan Support
When the user navigates to the Leads module and selects a particular Lead object to review its
details, based on the user's role there are several side-tabs that are visible. If 'Action Plans' are
visible to the user he can add any number of action plans based on the action plan templates that
have been configured by the admin.

Include the ‘sales-leads-action-plans’ permission for ‘actionPlans’ submenu under
‘leads’ container in cfs-container_menus.xml.
Provide the action commands ‘View’, ‘Add’, ‘Insert’ and ‘Details’ in
SalesActionPlans.java. Please refer to AccountActionPlans.java to provide similar
action commands. Use action command chaining to use common functionality in
ActionPlans.java.
The Leads Action Plan list page should display a drop-down menu for each record
with the following actions:

View Action Plan
Reassign
Review Notes
Archive
Delete

•

•

•

ConcourseSuite Support: Technical Documentation - page 191

Handling ConcourseSuite Data
Users interested in ConcourseSuite CRM are companies that already have a CRM application with
lots of valuable Customer data or are companies that have Customer data in various other forms
(Excel documents, Custom database etc) and would like to use ConcourseSuite CRM going forward.
To bring in Customer data from various sources and also to move data out of ConcourseSuite, users
can leverage some of the existing tools & features which allow the user to import/export data in and
out of a ConcourseSuite database.

Contact/Account Importers
The following 3 importers are available for bringing in people and organization information into
ConcourseSuite.

Leads Importer - Allows importing of people as Leads into ConcourseSuite CRM (
Available in the Leads module)
Contacts Importer - Allows importing of people as General Contacts into
ConcourseSuite CRM (Available in the Contacts module)
Account Contacts Importer - Allows importing of people as Account Contacts into
ConcourseSuite CRM (Available in the Contacts module)

Data Transfer Application
ConcourseSuite CRM has a Data Transfer Application (Reader/Writer) written in Java which can read
data from various input formats and write data to various output formats. These applications can
interface with files, databases, web services, etc.
To import related data, for example Accounts, Contacts, Opportunities, and Notes, a Reader can be
developed and executed.

Note: When importing Contacts using the Account Contacts Importer, if the Company
Name is present in the record being
imported, then an Account is created and the Contact is associated with the new
Account that was created. If the Company
Name is NOT present, then the Contact is imported as an Individual Account and you
can see an Account as well as a Primary
Contact record in ConcourseSuite.

•

•
•
•

•
•

ConcourseSuite Support: Technical Documentation - page 192

ConcourseSuite CRM includes a Writer that knows how to write data into ConcourseSuite CRM, and
comes with some basic Readers.
Readers are Java programs that send data to a Writer and associates data during the reading/writing
process. The reader and writer are configured and executed by the Transfer application.
Some of the Readers available in ConcourseSuite are:

ImportAccountContacts - Reads from a .CSV file and populates Organization &
Contact objects
ImportAccounts - Reads from a .CSV file and populates Organization objects
ImportGeneralContacts - Reads from a .CSV file and populates Contact objects
CFSDatabaseReader - Reads data out of a ConcourseSuite database

Some of the Writers available in ConcourseSuite are:
TextWriter - Writes to a text file
Cfshttpxmlwriter - Sends XML packets to a remote ConcourseSuite server (using
ConcourseSuite's XML API)

A configuration file of the form shown below is to be used to execute the Transfer Application. The
config file needed by the Transfer application, has information about the Reader that needs to be
loaded and a Writer that needs to be passed to the Reader to read/write data.

 <systemId>@SYSTEM.ID@</systemId>
 </writer>

<data-import-config>
 <description>
 Copies contacts from an Excel generated CSV file into ConcourseSuite under a
new Electronic Import user
 </description>
 <reader class="org.aspcfs.apps.transfer.reader.cfs.ImportAccountContacts">
 <propertyFile>@PROPERTY.FILE@</propertyFile>
 <csvFile>@CSV.FILE@</csvFile>
 </reader>
 <writer
class="org.aspcfs.apps.transfer.writer.cfshttpxmlwriter.CFSHttpXMLWriter">
 <url>http://@URL@/ProcessPacket.do</url>
 <id>@ID@</id>
 <code>@CODE@

#org.aspcfs.apps.transfer.transfer

ConcourseSuite Support: Technical Documentation - page 193

</data-import-config>
</code>
The Readers and Writers exchange Data using a DataRecord object which encapsulates a database
record in ConcourseSuite.

Backup & Restore
The Backup & Restore application is built on top of the Data Transfer Application explained above.
There a set of Readers and Writers which read from a ConcourseSuite database and store the data is
an XML format in a file and then read the data from the XML file and store it in the database using a
specialized writer.

Backup Process
The Backup tool is comprised of a Reader/Writer combination and uses the following in
ConcourseSuite CRM

The CFSDatabaseReader reads all of the database records from any ConcourseSuite CRM database
and passes it to a Writer. The CFSXMLWriter is used in the backup process to write the records into
an XML file which conforms to a particular Centric Backup File Format.

Restore Process
The Restore tool is comprised of a Reader/Writer combination and uses the following in
ConcourseSuite CRM

CFSDatabaseReader
CFSXMLWriter

#centric backup file format

•

•

•

•

ConcourseSuite Support: Technical Documentation - page 194

The CFSXMLReader reads all of the records from the backup XML file and passes it on to the
CFSXMLDatabaseWriter which stores the records to the database.

Developer Notes
The Backup and Restore application needs to be maintained. The following is a list of items that need
to be maintained:

As new tables and new columns are introduced into the database schema the import-
mappings.xml file needs to be updated with mappings to reflect the new columns and
new tables
As new tables are introduced, the existing data reader classes (eg:
ImportCommunications.java) need to be updated to read from these new tables.
If new modules are introduced in CCRM, they might require a new data reader class
that reads from all the database tables that were introduced for the new module in the
right sequence. The import-mappings.xml should also be updated with the new data
reader information.
The restore application will need to be tested to see if it works with the new
modules/tables. The Database Writer used by the restore process might need to be
upgraded based on any required functionality

CFSXMLReader
CFSXMLDatabaseWriter

ConcourseSuite Support: Technical Documentation - page 195

Centric Backup File Format
Here is a sample record that is output by the CFSXMLWriter. The following XML will be parsed by a
Database Writer to populate the org.aspcfs.modules.admin.User object and populate it via reflection
and store it in the database

<dataRecord action="insert" name="user" shareKey="false">
 <dataField alias="guid" name="id">1</dataField>
 <dataField name="username">ananth</dataField>
 <dataField name="password">792fef441691aa41135a15c1478a5ee4</dataField>
 <dataField name="encryptedPassword">792fef441691aa41135a15c1478a5ee4</dataField>
 <dataField name="lastLogin">2007-06-22 14:28:02.324</dataField>
 <dataField name="ip">0:0:0:0:0:0:0:1%0</dataField>
 <dataField name="timeZone">America/New_York</dataField>
 <dataField name="startofday"></dataField>
 <dataField name="endOfDay"></dataField>
 <dataField name="expires"></dataField>
 <dataField name="enabled">true</dataField>
 <dataField name="entered">2007-03-29 16:27:00.396</dataField>
 <dataField name="modified">2007-03-29 16:27:00.396</dataField>
 <dataField name="currency">USD</dataField>
 <dataField name="language">en_US</dataField>
 <dataField name="webdavPassword">e8613b3e0d8f1581eec4a5fa17fac7ff</dataField>
 <dataField name="hidden">false</dataField>
 <dataField name="hasWebdavAccess">false</dataField>
 <dataField name="hasHttpApiAccess">false</dataField>
 <dataField name="addContact">false</dataField>
</dataRecord>

ConcourseSuite Support: Technical Documentation - page 196

Using Web Services
As of Version 6, ConcourseSuite no longer maintains Web Services using SOAP. The preferred
method is the HTTP-XML API.
If you intend to use them, these methods may or may not work. ConcourseSuite provides a set of
classes that can be exposed as Web Services, and
can be consumed by external applications using SOAP. To enable Web Services
the following software needs to be installed as a separate webapp under you
tomcat installation.
 Apache Axis 1.2
 http://ws.apache.org/axis/
You must have AXIS_HOME property defined as an environment variable OR as a
property in a file called "home.properties"
 $ export AXIS_HOME=/path/to/apache-tomcat/webapps/axis

 % Using System, in Windows Control Panel, set:
 AXIS_HOME=c:\Program Files\Apache Software Foundation\Tomcat 5.5\webapps\axis

Make sure to edit 'Axis' related properties in the following properties file

To make the web service classes available to external applications, register

$CENTRIC_HOME/WEB-INF/build.properties

AXIS.WEBAPP=/axis
AXIS.HOST=127.0.0.1
AXIS.PORT=8080

ConcourseSuite Support: Technical Documentation - page 197

ConcourseSuite's Web Services with Axis. Run the following ant command:

By default, Axis permissions require that you execute this command on the web server itself using
localhost or 127.0.0.1.
If the command is successful, then you should be able to point your browser at
the following url and you will see the ConcourseSuite's Web Services that were deployed
 http://{yourhostname}/{axis.webapp}/servlet/AxisServlet/

 $ ant ws

 The <axis-admin> [[http://ws.apache.org/axis/java/ant/axis-admin.html task]] is
used to register CCRM services.

•

ConcourseSuite Support: Technical Documentation - page 198

Using ConcourseSuite Outlook Plugin
Outlook Plugin FAQ

#outlook plugin faq

1.

ConcourseSuite Support: Technical Documentation - page 199

Outlook Plugin FAQ
Outlook Plugin generates an error 'Missing TABCTL32.OCX'

•
•
•

•
•
•
•

•
•
•

1.

2.

3.

4.

5.
6.
7.
8.

ConcourseSuite Support: Technical Documentation - page 200

Adding support for a new database
For database independence, we use JDBC and SQL standards compliance. We've taken a simple,
yet efficient approach in which all of our objects know how to talk to the database directly, using a
connection pool and DatabaseUtils Class for database-specific syntax. We don't use triggers, views,
BLOBs, cursors or stored procedures.
In general, our Base and List Classes use:

SELECT with LEFT JOINs
SELECT with WHERE clause uses IN (SELECT)
SELECT with OFFSET and LIMIT, or TOP to retrieve paged list of records (db
dependent)
SELECT with EXISTS
INT, VARCHAR(300+), TEXT, FLOAT, TIMESTAMP or DATETIME types
TIMESTAMPS with NULL values and without auto-timestamping behavior
INSERT with retrieval of SEQUENCE or AUTONUMBER before or after insert (db
dependent)
TRANSACTIONS with COMMIT and ROLLBACK
CURRENT_TIMESTAMP
Cast functions as defined in DatabaseUtils (db dependent)

Changes that need to be made in ConcourseSuite CRM
Verify that the database meets the application's implemented capabilities; are there
any limits on table names, field names, datatype lengths, indexes, or sequences? If
so, an algorithm will be needed to truncate the default table, field, index, and
sequence names
Copy the JDBC driver into ConcourseSuite CRM's lib directory, the driver name
must include version information
Implement the database creation scripts based on the included scripts; PostgreSQL
is the reference implementation, however the database may be closely related to
another database; confirm the characteristics of the database first
Change ConcourseSuite CRM's master.properties file to include a connectivity
example
Change DatabaseUtils.java to support the new database
Change PagedListInfo.java to support the new database
Change CusomFieldRecord.java to support the new database
Change Setup.java and configure_database.jsp for application installation

1.

2.
3.
4.
5.

ConcourseSuite Support: Technical Documentation - page 201

Testing
First configure ConcourseSuite CRM as usual, but specify the new database in
build.properties during deployment
Manually create the database
Run "ant installdb" to create the database schema and install the base crm data
Repeat until installdb works
Try to login and test the application

•
•
•
•

ConcourseSuite Support: Technical Documentation - page 202

Exercises
The following exercises introduce the ConcourseSuite CRM framework and are intended to be
completed in order:

Add a sub-menu to an existing module
Add a form page to a sub-menu item
Register an editable lookup list in the Admin module
Write a business process that sends an email when a form is filled out

•

•

•

ConcourseSuite Support: Technical Documentation - page 203

Appendix A: Cloning a module

The following steps list how the Contacts module can be

cloned to another module, e.g., Personnel module
This is a first effort to list the steps. Suggestions and Modifications are encouraged.

Copy the action class from
/src/main/java/com/concursive/crm/web/modules/contacts/actions/ExternalContacts.ja
va

 to /src/main/java/com/concursive/crm/web/modules/personnel/actions
Change the package information for the action classes in

 /src/main/java/com/concursive/crm/web/modules/personnel/actions
from
package com.concursive.crm.web.modules.contacts.actions;
to
package com.concursive.crm.web.modules.personnel.actions;

In cfs-modules.xml copy the section
for the contacts module and paste it below the closing menu tag (or where ever else you want to
position it.) Rename the title to "Personnel"

 <menu>
 <action name="ExternalContacts"/>
 <action name="ExternalContactsOpps"/>
 <action name="ExternalContactsOppComponents"/>
 <action name="ExternalContactsCalls"/>
 <action name="ExternalContactsCallsForward"/>
 <action name="ExternalContactsPrototype"/>
 <action name="ExternalContactsImports"/>
 <action name="ExternalContactsHistory"/>
 <action name="ExternalContactsMessages"/>
 <page title="Contacts"/>

</menu>

•

•

•
•

•

•

•

ConcourseSuite Support: Technical Documentation - page 204

Create permissions in the database to control access to personal module (refer to
development document to update permissions in an existing installation and to add
them during the installation process)
Replace the permissions in cfs-modules for the personnel module.

The cfs-container_menus.xml draws the subtabs for each record. Search for
They would contain the definition of the sub tabs for the contacts
module. Include the permissions for the personnel module seperate
with comma for the value attribute of the permission tag (need to verify
if this works)

Copy all the jsps in web/jsp/contacts to web/jsp/personnel. Right now, I perceive this
is require so that the forms submit to the correct action classes. An alternative
suggestion is welcome.

One alternative I percieve is to have a _include.jsp for each page in
the contact/ directory and have the wrapper buttons in the personnel
directory.

In cfs-config.xml, define what pages each of the methods of the action classes in the
personnel module forward to.

E.g.,

needs to be copied and changed to
E.g.,

 <!-- Submenu used in the Contacts module -->

 <action name="ExternalContacts"
 class="com.concursive.crm.web.modules.contacts.actions.ExternalContacts">

 </action>

ConcourseSuite Support: Technical Documentation - page 205

Change file path of jsps from contacts to personnel.
This needs to be repeated for each of the action classes that are now in the personnel module.

 <action name="Personnel"

class="com.concursive.crm.web.modules.personnel.actions.ExternalContacts">

 </action>

ConcourseSuite Support: Technical Documentation - page 206

Automated Configuration Without Human

Intervention
Q: What are the possibilities to perform an automated configuration, without human interaction?
A: There is a mechanism for ConcourseSuite CRM to locate the preferences during startup. If the
application finds the necessary files and configuration, then it skips the web-based installer. While
the .war wasn't meant for this, it could be tweaked for the specific case you mention.
There are 4 components:
1) ConcourseSuite CRM must know where the external fileLibrary is located. This can be done in
one of two ways...
A) The Java preferences file must be installed or setup for the corresponding O/S. In the case of
WAS, a /WEB-INF/instance.property file must be located in the ConcourseSuite CRM .war. This is a
unique identifier if multiple ConcourseSuite CRM .wars are located on the same system. This is used
to map the .war to a fileLibrary using the Java Preferences API. This is generally done using the
web-based installer.
or
B) ConcourseSuite CRM looks for a path.txt file in a specific place depending on the O/S. If it finds it,
then it records the path using the Java Preferences API.
2) Once ConcourseSuite CRM knows where the fileLibrary path is, it checks for a build.properties file
there; this file declares all of the preferences for ConcourseSuite CRM including Connection URL and
more. The version of ConcourseSuite CRM must be accurately recorded here or else the webapp
goes into upgrade mode.
3) The fileLibrary must also have a default set of files. One of these files is a unique license for the
system. Typically this is generated during the web-based install and requires internet access. We
could work something out to pre-generate these. The other files are easy to copy from a working
instance.
4) The ConcourseSuite CRM database must exist and have the schema and default data.

1.

ConcourseSuite Support: Technical Documentation - page 207

Here are the details that should allow you to install ConcourseSuite CRM and bypass the web-based
ui...
1. Create a text file in one of the following locations... (Linux is specified first and /opt is tried if it
exists)
/opt/centric_crm/fileLibrary/path.txt
/var/lib/centric_crm/fileLibrary/path.txt
c:\CentricCRM\fileLibrary\path.txt
/Library/Application Support/CentricCRM/fileLibrary/path.txt
2. This text file can have 2 lines maximum, the first line being an optional comment:

This file is used by ConcourseSuite CRM to determine where the fileLibrary is
/opt/centric_crm/fileLibrary/instance1

1.

2.
3.

ConcourseSuite Support: Technical Documentation - page 208

Uninstalling
There are several components to a ConcourseSuite install...

The web application itself (crm.war) as well as the 'crm' directory in the 'webapps'
directory.
The fileLibrary, chosen and created during installation
A Java Preference determined by the OS and created during installation

Cleaning up those three items, completely removes ConcourseSuite.

Default File Library Paths

Linux /var/lib/concursive/crm/fileLibrary/

Mac OSX /Library/Application
Support/Concursive/crm/fileLibrary/

Unix /opt/concursive/crm/fileLibrary/

Windows c:\Concursive\crm\fileLibrary\

Default Java Preference Locations

Linux /root/.java/.userPrefs/com/concursive/crm/

Mac OSX
~/Library/Preferences/com.concursive.crm.plist

Windows Windows registry entry (search for
concursive)

